Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg 3 (145)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.55 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
x−2
Câu 2. Tính lim
x→+∞ x + 3
2
A. 1.
B. −3.
C. − .
D. 2.
3
4x + 1
Câu 3. [1] Tính lim
bằng?
x→−∞ x + 1
A. 2.
B. −1.
C. −4.
D. 4.


Câu 4. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. (4; 6, 5].
C. [6, 5; +∞).

D. (−∞; 6, 5).

Câu 5. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
B. m ≥ .
C. m ≤ .
D. m > .
A. m < .
4
4
4
4
Câu 6. Khối đa diện đều loại {3; 5} có số đỉnh
A. 20.
B. 8.
C. 12.
D. 30.
x+2
Câu 7. Tính lim
bằng?
x→2
x

A. 0.
B. 2.
C. 1.
D. 3.


4n2 + 1 − n + 2
Câu 8. Tính lim
bằng
2n − 3
3
A. +∞.
B. .
C. 1.
D. 2.
2
Câu 9. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 25 triệu đồng.
B. 2, 20 triệu đồng.
C. 2, 22 triệu đồng.
D. 3, 03 triệu đồng.
Câu 10. Phát biểu nào sau đây là sai?
A. lim un = c (un = c là hằng số).
B. lim qn = 0 (|q| > 1).
1
1

D. lim k = 0.
C. lim = 0.
n
n
Câu 11. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 6).
B. (2; 4; 3).
C. (1; 3; 2).
D. (2; 4; 4).
Câu 12.
!0 nào sau đây sai?
Z Mệnh đề
A.
f (x)dx = f (x).
Z
B. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
D. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Trang 1/10 Mã đề 1


n−1
Câu 13. Tính lim 2
n +2
A. 1.
B. 0.


C. 2.

D. 3.

t

9
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
+ m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 0.
B. 1.
C. Vơ số.
D. 2.
0 0 0
d = 300 .
Câu 15. Cho khối lăng trụ đứng ABC.A B C có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V của khối lăng trụ đã cho. √


3a3 3
a3 3
3
3
C. V =
.
D. V =
.
A. V = 6a .

B. V = 3a 3.
2
2
Câu 16. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối√chóp S .ABMN là



a3 3
5a3 3
4a3 3
2a3 3
A.
.
B.
.
C.
.
D.
.
2
3
3
3
Câu 17. Khối lập phương thuộc loại
A. {3; 3}.
B. {5; 3}.
C. {4; 3}.
D. {3; 4}.

Câu 14. [4] Xét hàm số f (t) =

9t

Câu 18. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 5 mặt. B. 6 đỉnh, 6 cạnh, 6 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 6 mặt.
Câu 19.√Thể tích của tứ diện đều √
cạnh bằng a

3
3
a 2
a3 2
a 2
.
B.
.
C.
.
A.
4
2
12
Câu 20. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Ba mặt.
B. Bốn mặt.
C. Hai mặt.

D. Một mặt.


Câu 21. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {5; 3}.
B. {3; 4}.
C. {3; 3}.

D. {4; 3}.

Câu 22. Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
A. Thập nhị diện đều. B. Bát diện đều.
C. Nhị thập diện đều.

D. Tứ diện đều.


a3 2
D.
.
6

3

x −1
Câu 23. Tính lim
x→1 x − 1
A. 3.
B. 0.
Câu 24. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối tứ diện đều.


C. −∞.

D. +∞.

C. Khối bát diện đều.

D. Khối 12 mặt đều.

Câu 25. [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
ab
1
1
A. 2
.
B. √
.
C. √
.
D. √
.
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
0

0


Câu 26. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = (0; +∞).
B. D = R \ {0}.

0

0

C. D = R.

D. D = R \ {1}.

Câu 27. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≤ 0.
B. m > − .
C. − < m < 0.
D. m ≥ 0.
4
4
Câu 28. [1] Giá trị của biểu thức 9log3 12 bằng
A. 2.
B. 144.
C. 24.
D. 4.
Trang 2/10 Mã đề 1



1
Câu 29. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 ≤ m ≤ −1.
B. (−∞; −2] ∪ [−1; +∞). C. (−∞; −2) ∪ (−1; +∞). D. −2 < m < −1.
Câu 30. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 7 mặt.
B. 8 mặt.
C. 9 mặt.
D. 6 mặt.
p
1
ln x
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
Câu 31. Gọi F(x) là một nguyên hàm của hàm y =
x
3
1
8
1
8
A. .
B. .
C. .
D. .
3
3
9

9
Câu 32. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích khối
√ chóp S .ABCD là 3 √
3
3

a 3
2a 3
a 3
A.
.
B.
.
C.
.
D. a3 3.
6
3
3
Câu 33. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 34. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?

A. 10 năm.
B. 14 năm.
C. 11 năm.
D. 12 năm.
Câu 35. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1. √
1
3
3
B. .
C. 1.
D.
.
A. .
2
2
2
[ = 60◦ , S O
Câu 36. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.

√ Khoảng cách từ O đến (S√BC) bằng

2a 57
a 57
a 57
.
C.
.
D.
.

A. a 57.
B.
17
19
19

Câu 37. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√ cho là



πa3 6
πa3 3
πa3 3
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
3
2
6
Câu 38. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = ln x − 1.

B. y0 = x + ln x.
C. y0 = 1 − ln x.
D. y0 = 1 + ln x.
Câu 39. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − .
B. − .
C. −e.
D. − 2 .
e
2e
e
 π
Câu 40. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


2 π4
1 π
3 π6
A.
e .
B. e 3 .
C.
e .
D. 1.
2
2

2
Câu 41. Cho z là nghiệm của phương trình√ x2 + x + 1 = 0. Tính P = z4 + 2z3 − z

−1 + i 3
−1 − i 3
A. P = 2i.
B. P =
.
C. P = 2.
D. P =
.
2
2
Câu 42. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
Trang 3/10 Mã đề 1


(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (II) sai.

B. Câu (III) sai.

C. Câu (I) sai.

D. Khơng có câu nào
sai.
2


2

Câu 43. [3-c]
và giá trị lớn nhất của hàm √
số f (x) = 2sin x + 2cos x lần lượt là
√ Giá trị nhỏ nhất √
B. 2 và 3.
C. 2 2 và 3.
D. 2 và 3.
A. 2 và 2 2.
Câu 44. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
C. V = S h.
A. V = 3S h.
B. V = S h.
2
3


Câu 45.
√ Tìm giá trị lớn nhất của hàm
√ số y = x + 3 + 6√− x
A. 3 2.
B. 2 + 3.
C. 2 3.

D. V = S h.


D. 3.

Câu 46. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD

√ là
8a3 3
8a3 3
4a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
3
9
9
9
2

Câu 47. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 5.
B. 2.
C. 3.


D. 4.

Câu 48. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 91cm3 .
B. 48cm3 .
C. 64cm3 .
D. 84cm3 .
Câu 49. Dãy số nào sau đây có giới hạn khác 0?
1
sin n
1
n+1
.
B. √ .
C.
.
D. .
A.
n
n
n
n
x
9
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
Câu 50. [2-c] Cho hàm số f (x) = x
9 +3
1
A. 2.

B. −1.
C. .
D. 1.
2
Câu 51. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 8.
C. 4.
D. 6.
Z 1
Câu 52. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
1
A. .
4

0

B. 1.

C. 0.

D.

1
.
2

!
!

!
4x
1
2
2016
Câu 53. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 2016.
B. T =
.
C. T = 2017.
D. T = 1008.
2017
12 + 22 + · · · + n2
Câu 54. [3-1133d] Tính lim
n3
1
2
A. .
B. +∞.
C. 0.
D. .
3

3
Câu 55. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R \ {1; 2}.
B. D = R.
C. D = [2; 1].
2

D. D = (−2; 1).
Trang 4/10 Mã đề 1


Câu 56. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 0.
C. 13.
1 − n2
bằng?
2n2 + 1
1
A. 0.
B. .
3
Câu 58. Bát diện đều thuộc loại
A. {4; 3}.
B. {3; 3}.

D. 9.

Câu 57. [1] Tính lim


C.

1
.
2

C. {5; 3}.

1
D. − .
2
D. {3; 4}.

Câu 59. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (2; 2).
B. (1; −3).
C. (−1; −7).

D. (0; −2).

Câu 60. Khối đa diện đều loại {3; 4} có số cạnh
A. 6.
B. 8.

D. 10.

C. 12.

Câu 61. Cho số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.


A. |z| = 17.
B. |z| = 10.
C. |z| = 10.
D. |z| = 17.
Câu 62. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (II) đúng.

B. Chỉ có (I) đúng.

C. Cả hai câu trên đúng. D. Cả hai câu trên sai.

Câu 63. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 62.
C. 64.
D. Vơ số.
Câu 64. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 1.
B. m > 0.

C. m ≥ 0.

D. m > −1.

Câu 65. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
B. Cả ba đáp án trên.

C. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
D. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
Câu 66. [1] Tính lim
x→3

A. 1.

x−3
bằng?
x+3
B. +∞.

C. 0.

D. −∞.

Câu 67.
bằng 1 là:
√ Thể tích của khối lăng√trụ tam giác đều có cạnh √
3
3
3

3
A.
.
B.
.
C.
.
D. .
4
12
2
4
0 0 0
Câu 68. Cho lăng trụ đều ABC.A B C có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


a3 3
a3 3
a3
3
A. a .
B.
.
C.
.
D.
.
2
6

3
Câu 69. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P hoặc d ⊥ P.
B. d song song với (P).
C. d nằm trên P.
D. d ⊥ P.
Trang 5/10 Mã đề 1


Câu 70. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 72.
B. 0, 8.
C. −7, 2.

D. 7, 2.

Câu 71. Các khẳng
!0 định nào sau đây là sai?
Z
Z
Z
f (x)dx = f (x).
B.
k f (x)dx = k
f (x)dx, k là hằng số.
A.
Z
Z
Z
Z

C.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C. D.
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C.
log 2x

x2
1 − 2 ln 2x
1 − 4 ln 2x
B. y0 = 3
.
C. y0 =
.
x ln 10
2x3 ln 10

Câu 72. [1229d] Đạo hàm của hàm số y =
A. y0 =

2x3

1
.
ln 10

1 − 2 log 2x
.
x3


D. y0 =

Câu 73. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
9
15
18
6
Câu 74. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3

−2
−1
x y−2 z−3
x−2 y−2 z−3
=
=
.
B. =
=
.
A.
2
3
4
2
3
−1
x−2 y+2 z−3
x y z−1
C.
=
=
.
D. = =
.
2
2
2
1 1
1

Z 1
6
2
3
Câu 75. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
. Tính
f (x)dx.
0
3x + 1
A. −1.

B. 2.

Câu 76. Hàm số nào sau đây khơng có cực trị
1
A. y = x3 − 3x.
B. y = x + .
x
Câu 77.

C. 6.

D. 4.

C. y = x4 − 2x + 1.

D. y =

[12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23
√ i

h
3

có ít nhất một nghiệm thuộc đoạn 1; 3
A. m ∈ [0; 2].
B. m ∈ [0; 1].

C. m ∈ [−1; 0].

x−2
.
2x + 1

q
x+ log23 x + 1+4m−1 = 0

D. m ∈ [0; 4].

d = 120◦ .
Câu 78. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 3a.
B.
.
C. 4a.
D. 2a.
2
Câu 79. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].

(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 2.

B. 3.

C. 1.

D. 4.
Trang 6/10 Mã đề 1


Câu 80. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
C.
.
D.
.
A. a3 .
B.
6
24
12
2


Câu 81. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
1
B.
.
C.
A. 2 .
√ .
e
2e3
2 e
Câu 82. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 4 − 2 ln 2.
B. e.
C. −2 + 2 ln 2.

D.

2
.
e3

D. 1.

Câu 83. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 24 m.
B. 12 m.

C. 8 m.
D. 16 m.
Câu 84.
Z Trong cácα+1khẳng định sau, khẳng định nào sai? Z
x
1
A.
xα dx =
+ C, C là hằng số.
B.
dx = ln |x| + C, C là hằng số.
α+1
Z
Z x
C.

dx = x + C, C là hằng số.

Câu 85. Khối đa diện đều loại {4; 3} có số mặt
A. 6.
B. 8.

0dx = C, C là hằng số.

D.

C. 12.

D. 10.


Câu 86. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 2ac
3b + 3ac
3b + 3ac
.
B.
.
C.
.
D.
.
A.
c+1
c+3
c+2
c+2
1
Câu 87. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = −3, m = 4.
B. −3 ≤ m ≤ 4.
C. m = −3.
D. m = 4.
Câu 88. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5

a3 3
a3 5
a3 5
A.
.
B.
.
C.
.
D.
.
6
4
12
12
Câu 89. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim f (x) = f (a).
B. f (x) có giới hạn hữu hạn khi x → a.
x→a

C. lim+ f (x) = lim− f (x) = a.
x→a

x→a

D. lim+ f (x) = lim− f (x) = +∞.
x→a

x→a


Câu 90. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
A. .
B. .
C. 1.
D. 3.
2
2
Câu 91.
đề nào sai? Z
Z Cho hàm sốZf (x), g(x) liên tục trên R. Trong cácZmệnh đề sau, mệnh Z
A.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
B.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
Z
Z
Z
Z
Z
C.
f (x)g(x)dx =
f (x)dx g(x)dx.
D.
( f (x) − g(x))dx =

f (x)dx − g(x)dx.
Câu 92. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 3.
C. 1.

D. Vô nghiệm.
Trang 7/10 Mã đề 1


Câu 93. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 3 mặt.
C. 4 mặt.
D. 6 mặt.
Câu 94. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
A.
.
B. 7.
C. .
D. 5.
2
2
log7 16
bằng
Câu 95. [1-c] Giá trị của biểu thức
log7 15 − log7 15
30

A. −2.
B. 4.
C. 2.
D. −4.
!4x
!2−x
2
3
Câu 96. Tập các số x thỏa mãn


3
2
"
!
#
#
"
!
2
2
2
2
A. − ; +∞ .
B. −∞; .
C. −∞; .
D.
; +∞ .
3
5

3
5
Câu 97. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 20, 128 triệu đồng. B. 3, 5 triệu đồng.
C. 50, 7 triệu đồng.
D. 70, 128 triệu đồng.



x = 1 + 3t




Câu 98. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là












x
=
−1
+
2t
x
=
1
+
3t
x
=
−1
+
2t
x = 1 + 7t

















A. 
C. 
.
y = −10 + 11t . B. 
y = 1 + 4t .
y = −10 + 11t . D. 
y=1+t

















z = −6 − 5t
z = 1 − 5t
z = 6 − 5t
z = 1 + 5t
log 2x

Câu 99. [3-1229d] Đạo hàm của hàm số y =
x2
1
1 − 2 ln 2x
1 − 4 ln 2x
0
0
.
B.
y
=
.
C.
y
=
.
A. y0 =
2x3 ln 10
2x3 ln 10
x3 ln 10
Câu 100. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e

1 + 2e
1 + 2e
A. m =
.
B. m =
.
C. m =
.
4e + 2
4 − 2e
4e + 2
Câu 101. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 11 cạnh.
C. 10 cạnh.
Câu 102. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (2; +∞).
B. R.
C. (0; 2).

D. y0 =

1 − 2 log 2x
.
x3

D. m =

1 − 2e
.

4 − 2e

D. 9 cạnh.
D. (−∞; 1).

Câu 103. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
A. lim
= .
B. lim [ f (x)g(x)] = ab.
x→+∞ g(x)
x→+∞
b
C. lim [ f (x) − g(x)] = a − b.
D. lim [ f (x) + g(x)] = a + b.
x→+∞

x→+∞

2−n
Câu 104. Giá trị của giới hạn lim
bằng
n+1
A. 0.
B. 1.
C. −1.
D. 2.
1

Câu 105. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = −ey − 1.
B. xy0 = ey + 1.
C. xy0 = ey − 1.
D. xy0 = −ey + 1.
Trang 8/10 Mã đề 1


Câu 106. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m > .
C. m < .
D. m ≥ .
4
4
4
4
mx − 4
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 107. Tìm m để hàm số y =
x+m
A. 45.

B. 67.
C. 26.
D. 34.
Câu 108. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
!
1
1
1
+
+ ··· +
Câu 109. Tính lim
1.2 2.3
n(n + 1)
3
A. .
B. 2.
C. 1.
D. 0.
2
Câu 110. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
D. .
A. 9.
B. 6.

C. .
2
2
2
Câu 111. [2-c] Giá trị lớn nhất của hàm số y = ln(x + x + 2) trên đoạn [1; 3] là
A. ln 12.
B. ln 4.
C. ln 14.
D. ln 10.
2mx + 1
1
Câu 112. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 1.
B. 0.
C. −2.
D. −5.




Câu 113. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
9
3
3
B. m ≥ 0.
C. 0 ≤ m ≤ .
D. 0 ≤ m ≤ .

A. 0 < m ≤ .
4
4
4
!
1
1
1
Câu 114. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
C. 2.
D. .
A. +∞.
B. .
2
2
Câu 115. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 6.
B. 4.
C. 3.
D. 8.
1
Câu 116. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.

B. 2 ≤ m ≤ 3.
C. 0 < m ≤ 1.
D. 0 ≤ m ≤ 1.
2

2

Câu 117. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 1.
B. 2.
C. 0.

D. 3.

Câu 118. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số nghịch biến trên khoảng (−2; 1).
C. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 119. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tứ giác.
B. Hai hình chóp tam giác.
C. Một hình chóp tam giác và một hình chóp tứ giác.
D. Một hình chóp tứ giác và một hình chóp ngũ giác.
Trang 9/10 Mã đề 1


2n + 1
Câu 120. Tìm giới hạn lim

n+1
A. 2.
B. 1.
1
Câu 121. Hàm số y = x + có giá trị cực đại là
x
A. −1.
B. −2.

C. 3.

D. 0.

C. 1.

D. 2.

Câu 122. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).

√ Thể tích khối chóp S 3.ABC
√ là

3
a 3
a 3
a3 2
a3 3
A.
.

B.
.
C.
.
D.
.
12
4
12
6
Câu 123. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

A. aαβ = (aα )β .
B. aα+β = aα .aβ .
C. aα bα = (ab)α .
D. β = a β .
a
Câu 124. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 5.
C. 4.
D. 8.
Câu 125. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 12.
B. 27.
C. 10.

D. 3.


Câu 126. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 2020.
B. log2 13.
C. 13.
D. 2020.
Câu 127. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. − .
B. 2.
C. −2.
D. .
2
2
Câu 128. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Hai đường phân giác y = x và y = −x của các góc tọa độ.
B. Đường phân giác góc phần tư thứ nhất.
C. Trục ảo.
D. Trục thực.

Câu 129. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 1 nghiệm.
B. 3 nghiệm.
C. 2 nghiệm.
D. Vô nghiệm.
1
Câu 130. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 4.

B. 3.
C. 2.
D. 1.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B

2. A

3.

D

5.
7.

4.

C
B
C


9.
13.

6.

C

8.

C

10.

11. A

B

B

12.

C
D

14.

B

15.


C

16. A

17.

C

18. A

19.

C

20.

21. A

22. A

23. A

24. A

25.

B

26.


27.

B

28.

29. A
31.

D

B

C
B

30.

C

32.

C
C

33.

C

34.


35.

C

36.

D
D

37.

B

38.

39.

B

40. A

41.

C

42.

43.


C

44.

45. A

46.
D

47.
B

53.
55.

C
B

48.

49. A
51.

D

D

C

50.


D

52.

D

54. A
56.

B

B

57.

D

58.

59.

D

60.

C

62.


C

61.
63.
65.

C

D

64.

B

D

66.

C

67. A

68.
1

C
B


69. A


70.

71.

D

72.

74.

D

75.

76.

D

77.

78.

B

79.
D

80.
82.


D
C
B
D

83.

B

85. A

86.

D

87. A

88.

D

89. A

90. A

91.

92.


C

93.

94.

C

95.

C
B
D

97. A

96. A
98.

C

100. A

99.

C

101.

C


102.

C

103. A

104.

C

105.

C
D

107.

106. A
B

110.
112.

B

81. A

84. A


108.

C

D
C

116. A
118.

C

111.

C

113.

B

114.

109.

D

D

115.


C

117.

C

119.

B

120. A

121.

B

122. A

123.

D

124. A

125.

D

126.


B

128. A
130.

D

2

127.

C

129.

C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×