Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg 3 (704)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (151.05 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Khối đa diện đều loại {5; 3} có số cạnh
A. 8.
B. 20.

C. 12.

Câu 2. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

A. 5.
B. 25.
C. 5.

D. 30.



Câu 3. Tính giới hạn lim
x→2

A. 0.

x2 − 5x + 6


x−2
B. 1.

C. −1.

D.

1
.
5

D. 5.

Câu 4. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. Vô nghiệm.
C. 2.
D. 1.
Câu 5. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−1; 3].
B. [1; +∞).
C. (−∞; −3].
D. [−3; 1].
Câu 6. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 3.
C. Vô nghiệm.
Câu 7. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.

B. 10 mặt.
C. 8 mặt.
2n − 3
bằng
Câu 8. Tính lim 2
2n + 3n + 1
A. −∞.
B. 0.
C. 1.

D. 1.
D. 6 mặt.
D. +∞.

Câu 9. Hàm số nào sau đây khơng có cực trị
1
x−2
A. y = x4 − 2x + 1.
B. y = x + .
C. y =
.
D. y = x3 − 3x.
x
2x + 1
Câu 10. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
C. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 11. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?

A. Số mặt của khối chóp bằng 2n+1.
B. Số mặt của khối chóp bằng số cạnh của khối chóp.
C. Số cạnh của khối chóp bằng 2n.
D. Số đỉnh của khối chóp bằng 2n + 1.
Câu 12. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
B. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
C. F(x) = G(x) trên khoảng (a; b).
D. Cả ba câu trên đều sai.
Câu 13. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Thập nhị diện đều. B. Tứ diện đều.
C. Bát diện đều.

D. Nhị thập diện đều.
Trang 1/10 Mã đề 1


Câu 14. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
1 − 2n
.
B.
u
=
.
A. un =
n
5n + n2
n2


C. un =

n2 − 2
.
5n − 3n2

Câu 15. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −5.
B. Không tồn tại.
C. −3.
Câu 16. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim
A. 1.

B. +∞.

C. −∞.

Câu 17. [1] !Tập xác định của hàm số y != log3 (2x + 1) là
!
1
1
1
A.
; +∞ .
B. −∞; − .
C. −∞; .
2
2
2


D. un =

n2 + n + 1
.
(n + 1)2

D. −7.
un
bằng
vn
D. 0.
!
1
D. − ; +∞ .
2

Câu 18. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 8 đỉnh, 10 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 19. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là

3

a3 3
3

a3 3
2a
.
B.
.
C. a3 3.
.
A.
D.
6
3
3
1 − 2n
Câu 20. [1] Tính lim
bằng?
3n + 1
2
1
2
A. − .
B. 1.
C. .
D. .
3
3
3
1
Câu 21. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.

B. 2 < m ≤ 3.
C. 0 < m ≤ 1.
D. 0 ≤ m ≤ 1.
Câu 22. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên khoảng (−2; 1).
B. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = e − 1.
C. xy0 = −ey − 1.
D. xy0 = −ey + 1.

Câu 23. [3-12217d] Cho hàm số y = ln
A. xy0 = ey + 1.

Câu 24. Khối đa diện đều loại {5; 3} có số đỉnh
A. 12.
B. 20.

C. 30.

D. 8.

Câu 25. Phát biểu nào sau đây là sai?
A. lim un = c (un = c là hằng số).

C. lim qn = 0 (|q| > 1).

1
= 0.
n
1
D. lim k = 0.
n

B. lim

Câu 26. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tứ giác.
B. Một hình chóp tứ giác và một hình chóp ngũ giác.
C. Hai hình chóp tam giác.
D. Một hình chóp tam giác và một hình chóp tứ giác.
Trang 2/10 Mã đề 1


Câu 27. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 2).
B. Hàm số đồng biến trên khoảng (0; +∞).
C. Hàm số đồng biến trên khoảng (0; 2).
D. Hàm số nghịch biến trên khoảng (0; 2).
Câu 28. Bát diện đều thuộc loại
A. {3; 3}.
B. {3; 4}.

C. {4; 3}.


Câu 29. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − .
B. − .
C. − 2 .
2e
e
e

D. {5; 3}.

D. −e.

Câu 30. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m ≥ 3.
C. m < 3.
D. m ≤ 3.
Câu 31. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. −7, 2.
B. 0, 8.
C. 7, 2.

D. 72.

2

Câu 32. Tính
√4 mơ đun của số phức z biết
√ (1 + 2i)z = 3 + 4i.
A. |z| = 5.
B. |z| = 2 5.
C. |z| = 5.

D. |z| =

Câu 33. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.

D. Khối bát diện đều.

C. Khối lập phương.


5.

Câu 34. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có hai.
B. Có một hoặc hai.
C. Có một.
D. Khơng có.
Câu 35. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
B. Số đỉnh của khối chóp bằng số mặt của khối chóp.
C. Số cạnh của khối chóp bằng số mặt của khối chóp.

D. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
Câu 36.! Dãy số nào sau đây có giới
!n hạn là 0?
n
4
5
.
B.
.
A.
3
e

!n
1
C.
.
3

!n
5
D. − .
3

Câu 37. Cho số phức z thỏa mãn |z +

√ 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
A. |z| = 17.
B. |z| = 10.
C. |z| = 10.

D. |z| = 17.
Câu 38. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. .
C. 4.
D. .
8
2
4
Câu 39. Giá trị của lim (3x2 − 2x + 1)
A. +∞.

x→1

B. 1.

C. 2.

D. 3.

Câu 40. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
Câu 41. Tính lim
A. 1.


cos n + sin n
n2 + 1
B. +∞.

C. 0.

D. −∞.
Trang 3/10 Mã đề 1


12 + 22 + · · · + n2
Câu 42. [3-1133d] Tính lim
n3
1
A. .
B. +∞.
3

C. 0.

D.

2
.
3


Câu 43. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √

khối chóp S .ABCD là √
3

a3 3
a3
a 3
.
B.
.
C.
.
D. a3 3.
A.
3
12
4
0 0 0
Câu 44. [4-1214h] Cho khối lăng trụ ABC.A B C , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3


2 3
A.

.
B. 3.
C. 2.
D. 1.
3
Câu 45. Khối đa diện đều loại {3; 5} có số mặt
A. 30.
B. 8.
C. 12.
D. 20.
Câu 46. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (−1; 1).
C. (1; +∞).
Câu 47. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 1.

B. 4.

C. 3.

D. (−∞; −1).
1

= 3m − 2 có nghiệm duy

3|x−1|

D. 2.


Câu 48. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vuông cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a 3. Thể tích khối chóp S .ABCD



3
3
3
a
a
3
a
3
A. a3 .
B.
.
C.
.
D.
.
3
9
3
ln2 x
m
Câu 49. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x

e
số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 22.
C. S = 135.
D. S = 24.
2
x − 12x + 35
Câu 50. Tính lim
x→5
25 − 5x
2
2
A. −∞.
B. .
C. − .
D. +∞.
5
5
Câu 51. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB)
√ bằng



a 6
A.
.
B. a 3.
C. a 6.

D. 2a 6.
2
2
Câu 52. [2]√Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2
A. m = ± 2.
B. m = ±3.
C. m = ± 3.
D. m = ±1.
2

2

sin x
Câu 53. [3-c]
+ 2cos x lần
√ Giá trị nhỏ nhất và giá trị lớn nhất của hàm√số f (x) = 2
√ lượt là
A. 2 và 2 2.
B. 2 và 3.
C. 2 và 3.
D. 2 2 và 3.

Câu 54. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 4 mặt. B. 4 đỉnh, 6 cạnh, 4 mặt. C. 4 đỉnh, 8 cạnh, 4 mặt. D. 3 đỉnh, 3 cạnh, 3 mặt.
4x + 1
Câu 55. [1] Tính lim
bằng?
x→−∞ x + 1
A. 4.

B. −1.
C. −4.
D. 2.
Trang 4/10 Mã đề 1


Câu 56. Phần thực√và phần ảo của số √
phức z =
A. Phần thực là 2, √
phần ảo là 1 − √
3.
C. Phần thực là 1 − 2, phần ảo là − 3.




2 − 1 − 3i lần lượt √l

B. Phần thực là √2 − 1, phần ảo là √
3.
D. Phần thực là 2 − 1, phần ảo là − 3.

1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
n2 + 1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = 1.
1
C. lim un = 0.
D. lim un = .

2
x
x
Câu 58. [3-12211d] Số nghiệm của phương trình 12.3 + 3.15 − 5 x = 20 là
A. 2.
B. 3.
C. 1.
D. Vô nghiệm.

Câu 57. [3-1132d] Cho dãy số (un ) với un =

d = 60◦ . Đường chéo
Câu 59. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0




3
3
3

2a
4a
a
6
6
6
.
C.

.
D.
.
B.
A. a3 6.
3
3
3
Câu 60. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Giảm đi n lần.
B. Tăng lên (n − 1) lần. C. Không thay đổi.
D. Tăng lên n lần.
Câu 61. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị nhỏ nhất trên K.
C. f (x) liên tục trên K.

B. f (x) xác định trên K.
D. f (x) có giá trị lớn nhất trên K.

Câu 62. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −2.
C. m = −3.
!2x−1
!2−x
3
3
Câu 63. Tập các số x thỏa mãn



5
5
A. (−∞; 1].
B. [1; +∞).
C. [3; +∞).

D. m = −1.

D. (+∞; −∞).

Câu 64. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
.
D. log2 a =
.
A. log2 a = − loga 2.
B. log2 a = loga 2.
C. log2 a =
log2 a
loga 2
Câu 65. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 27 m.
B. 1587 m.
C. 387 m.

D. 25 m.
! x3 −3mx2 +m
1
Câu 66. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m , 0.
B. m ∈ R.
C. m ∈ (0; +∞).
D. m = 0.
Câu 67. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là



a3 15
a3 5
a3 6
3
A.
.
B. a 6.
C.
.
D.
.
3
3
3

Câu 68. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC theo a


a3 5
a3
a3 15
a3 15
A.
.
B.
.
C.
.
D.
.
25
3
25
5
Trang 5/10 Mã đề 1


Câu 69. Tính lim
A. 0.

2n2 − 1
3n6 + n4
B. 2.


C. 1.

Câu 70. Giá√trị cực đại của hàm số y√= x3 − 3x2 − 3x + 2

A. −3 + 4 2.
B. 3 − 4 2.
C. 3 + 4 2.

D.

2
.
3


D. −3 − 4 2.

Câu 71. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (0; 1).
B. (−∞; −1) và (0; +∞). C. (−∞; 0) và (1; +∞). D. (−1; 0).
Câu 72. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 1200 cm2 .
B. 160 cm2 .
C. 160 cm2 .
D. 120 cm2 .
Câu 73. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [−1; 2).
B. [1; 2].
C. (1; 2).


D. (−∞; +∞).

Câu 74. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể
√ tích khối chóp S .ABCD là
3
10a 3
A. 40a3 .
B.
.
C. 10a3 .
D. 20a3 .
3
7n2 − 2n3 + 1
Câu 75. Tính lim 3
3n + 2n2 + 1
7
2
B. .
C. 0.
D. 1.
A. - .
3
3
Câu 76. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 9.
B. Không tồn tại.
C. 13.
D. 0.

Câu 77.
√ min |z − 1 − i|.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
A. 10.
B. 1.
C. 2.
D. 2.
!
5 − 12x
Câu 78. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 1.
B. 3.
C. 2.
D. Vô nghiệm.
Câu 79. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp 6 lần.
C. Tăng gấp 4 lần.
D. Tăng gấp đôi.
Câu 80. Khối đa diện đều loại {4; 3} có số cạnh
A. 12.
B. 10.
2−n
Câu 81. Giá trị của giới hạn lim
bằng
n+1
A. 1.

B. −1.

C. 30.

D. 20.

C. 2.

D. 0.

Câu 82. Khối chóp ngũ giác có số cạnh là
A. 10 cạnh.
B. 12 cạnh.

C. 11 cạnh.

D. 9 cạnh.

Câu 83. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Trang 6/10 Mã đề 1


Các mệnh đề đúng là
A. (I) và (III).

B. (II) và (III).


C. (I) và (II).

x+1
bằng
x→+∞ 4x + 3
1
1
B. .
C. .
4
3
[2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
B. 0.
C. 3.
n−1
Tính lim 2
n +2
B. 2.
C. 1.

D. Cả ba mệnh đề.

Câu 84. Tính lim
A. 3.
Câu 85.
A. 1.
Câu 86.
A. 0.


D. 1.
D. 2.

D. 3.

Câu 87. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 3.

B. 2.

C. 4.

D. 1.

Câu 88. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e2 .
B. −2e2 .
C. −e2 .
D. 2e4 .
x+3
Câu 89. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 1.
B. 2.

C. Vô số.
D. 3.
x
x+1
x−2 x−1
+
+
+
và y = |x + 1| − x − m (m là tham
Câu 90. [4-1212d] Cho hai hàm số y =
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [−3; +∞).
B. (−∞; −3].
C. (−∞; −3).
D. (−3; +∞).
Câu 91. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
√ tích khối chóp S .ABC
√là
√ với đáy và S C = a 3. 3Thể

3
3
2a 6
a 6

a3 3
a 3
A.
.
B.
.
C.
.
D.
.
4
9
12
2
1 − n2
Câu 92. [1] Tính lim 2
bằng?
2n + 1
1
1
1
A. .
B. − .
C. 0.
D. .
2
2
3

Câu 93. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy

là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √


3
a 6
a 6
a3 2
a3 6
A.
.
B.
.
C.
.
D.
.
6
36
6
18
!
!
!
4x
1
2
2016
Câu 94. [3] Cho hàm số f (x) = x

. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T =
.
B. T = 2016.
C. T = 1008.
D. T = 2017.
2017
Trang 7/10 Mã đề 1


Câu 95. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 + ln x.
B. y0 = ln x − 1.

C. y0 = x + ln x.

D. y0 = 1 − ln x.

Câu 96. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −2 ≤ m ≤ 2.
B. −3 ≤ m ≤ 3.
C. m ≥ 3.
D. m ≤ 3.

1
Câu 97. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 < m < −1.
B. −2 ≤ m ≤ −1.
C. (−∞; −2] ∪ [−1; +∞). D. (−∞; −2) ∪ (−1; +∞).
Câu 98. Khối đa diện đều loại {3; 3} có số mặt
A. 2.
B. 3.

C. 4.

D. 5.

Câu 99. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng


a 2
a 2
.
B.
.
C. 2a 2.
D. a 2.
A.
4

2
2
Câu 100. Cho z là nghiệm của phương trình
= z4 + 2z3 − z
√ x + x + 1 = 0. Tính P √
−1 − i 3
−1 + i 3
A. P = 2.
B. P =
.
C. P =
.
D. P = 2i.
2
2
Câu 101. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

A. aαβ = (aα )β .
B. aα bα = (ab)α .
C. β = a β .
D. aα+β = aα .aβ .
a
1

Câu 102. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R \ {1}.
B. D = (−∞; 1).
C. D = (1; +∞).


D. D = R.

Câu 103. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
z
x+1 y−5
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
d:
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (3; 4; −4).
B. ~u = (2; 1; 6).
C. ~u = (2; 2; −1).
D. ~u = (1; 0; 2).

Câu 104. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 3 nghiệm.
B. 1 nghiệm.
C. Vô nghiệm.
D. 2 nghiệm.
Câu 105.
Z 0 Trong các khẳng định sau, khẳng định nào sai?
u (x)
dx = log |u(x)| + C.
A.
u(x)
B. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.

C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
D. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
Câu 106. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = (0; +∞).
B. D = R \ {0}.

C. D = R \ {1}.

Câu 107. Tứ diện đều thuộc loại
A. {3; 3}.
B. {5; 3}.

C. {3; 4}.

D. D = R.

D. {4; 3}.
!
3n + 2
2
Câu 108. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 4.
B. 2.
C. 3.
D. 5.
Trang 8/10 Mã đề 1



Câu 109. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc
60◦ . Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n.
Thể tích khối


√ chóp S .ABMN là 3 √
3
2a 3
4a3 3
a3 3
5a 3
.
B.
.
C.
.
D.
.
A.
3
3
3
2
Câu 110. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 3
a3 5

a3 5
a3 5
A.
.
B.
.
C.
.
D.
.
12
4
6
12
Câu 111. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
A. y = log √2 x.
B. y = log 14 x.

C. y = log π4 x.
D. y = loga x trong đó a = 3 − 2.

Câu 112. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả
bao nhiêu giá trị ngun dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. Vô số.
C. 62.
D. 64.
Câu 113. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 10.
B. ln 12.

C. ln 14.
D. ln 4.
Câu 114. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. Vô số.
B. 1.
C. 3.
D. 2.
Câu 115. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 116. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e2 − 2; m = e−2 + 2.
C. M = e−2 + 1; m = 1.
D. M = e−2 + 2; m = 1.
Z 1
Câu 117. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

A. 1.

B. 0.

Câu 118.
thức nào sau đây√khơng có nghĩa
√ Biểu

−3
0
A. (− 2) .
B.
−1.

C.

1
.
4

C. (−1)−1 .

D.

1
.
2

D. 0−1 .

Câu 119. Khối đa diện đều loại {3; 5} có số đỉnh
A. 12.
B. 20.
C. 8.
D. 30.
t
9
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao

Câu 120. [4] Xét hàm số f (t) = t
9 + m2
cho f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. Vơ số.
B. 0.
C. 1.
D. 2.
Câu 121. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 8 năm.
B. 9 năm.
C. 7 năm.
D. 10 năm.
Câu 122. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. 5.
B. .
C. 7.
D.
.
2
2
Trang 9/10 Mã đề 1


log23

q

x + log23 x + 1 + 4m −

Câu 123. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình
√ i
h
1 = 0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 2].
C. m ∈ [0; 1].
D. m ∈ [0; 4].
√3
Câu 124. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1
B. .
C. −3.
D. 3.
A. − .
3
3
Câu 125. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 3.
B. 2e.
C. 2e + 1.
D. .
e
Câu 126. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)

a
8a
2a
5a
.
B. .
C.
.
D.
.
A.
9
9
9
9
Câu 127. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 5 mặt.
C. 4 mặt.
D. 3 mặt.
Câu 128. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó
Q0 là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số
lượng vi khuẩn đạt 100.000 con?
A. 3, 55.
B. 20.
C. 15, 36.
D. 24.
mx − 4
Câu 129. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]

x+m
A. 34.
B. 67.
C. 45.
D. 26.
Câu 130. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3.
Tính f (2) + f (4)?
A. 10.
B. 12.
C. 4.
D. 11.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D

3.

2.

B

4.


C

C

5.

D

6.

7.

D

8.

B
B

9.

C

10.

11.

C


12. A
14. A

13. A
15.

D

16.

B

17.

D

D

18. A

19.

B

20. A

21.

B


22.

B

23.

B

24.

B

25.

C

26.

27.

C

28.

B

29. A

30.


B

31. A

32. A
C

33.

34.

C

B

35.

B

36.

37.

B

38.

D
D


39.

C

40.

41.

C

42. A

43. A

C

44.

45.

D

C

46.

B

47. A


48.

B

49. A

50.

B

51.

52.

C

53.

D

54.

57.

D

D

58.


59. A

C

60. A

61.

62.

C
B

65. A
67.

B

56.

55. A

63.

D

D

64.


D

66.

D

68.
1

B

C


69. A

70. A

71.

D

72.

73.

D

74.


D

76.

D

75. A
77.

B

78. A

79. A
81.

80. A
82. A

B

83.
85.

B

84.

C
B


B

86. A

87. A

C

88.
D

89.
C

91.

D

93.

90.

B

92.

B

95. A


96.

97.

B

99.

B

101.

C

94.
B

98.

C

100. A
C

103.

102.
D


C

104.

D

105. A

106.

D

107. A

108. A

109.

D

110.

111. A

D

112.

113.


C

114.

C

D

115.

D

116. A

117.

D

118.

D

120.

D

119. A
121.

122.


B

123. A

124.

B

125. A

126.

C

128.

C

127.

B

C

129. A

130.

2


B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×