TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = 10.
B. f 0 (0) = ln 10.
C. f 0 (0) = 1.
D. f 0 (0) =
1
.
ln 10
Câu 2. Cho
Z hai hàm y =
Z f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
B. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Câu 3. [1] Đạo hàm của hàm số y = 2 x là
1
1
A. y0 = 2 x . ln x.
.
C. y0 = 2 x . ln 2.
.
B. y0 =
D. y0 = x
ln 2
2 . ln x
Câu 4. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e−2 + 2; m = 1.
C. M = e−2 + 1; m = 1.
D. M = e2 − 2; m = e−2 + 2.
2x + 1
Câu 5. Tính giới hạn lim
x→+∞ x + 1
1
A. 1.
B. 2.
C. .
D. −1.
2
Câu 6. Tứ diện đều thuộc loại
A. {4; 3}.
B. {3; 3}.
C. {3; 4}.
D. {5; 3}.
Câu 7. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 6%.
B. 0, 5%.
C. 0, 7%.
D. 0, 8%.
Câu 8. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > −1.
B. m > 0.
C. m ≥ 0.
D. m > 1.
Câu 9. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.
√
√
√
√
5 13
B.
.
C. 26.
D. 2 13.
A. 2.
13
Câu 10. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 2e.
B. 2e + 1.
C. 3.
D. .
e
Câu 11. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng
√
√
√
a 2
a 2
A.
.
B.
.
C. a 2.
D. a 3.
2
3
Câu 12. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp 4 lần.
C. Tăng gấp đôi.
D. Tăng gấp 6 lần.
Trang 1/10 Mã đề 1
7n2 − 2n3 + 1
Câu 13. Tính lim 3
3n + 2n2 + 1
2
7
B. - .
A. .
3
3
!
1
1
1
Câu 14. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 2.
B. .
2
C. 0.
D. 1.
C. 0.
D. 1.
2
Câu 15. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
2
1
1
C. 3 .
A. 3 .
B. √ .
2e
e
2 e
D.
1
.
e2
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác đều ABI có hai đỉnh A, √
B thuộc (C), đoạn thẳng AB
√ có độ dài bằng
√
A. 2.
B. 2 3.
C. 2 2.
D. 6.
Câu 16. [3-1214d] Cho hàm số y =
Câu 17. Khối đa diện đều loại {3; 5} có số mặt
A. 8.
B. 30.
C. 20.
D. 12.
Câu 18. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 0).
B. Hàm số nghịch biến trên khoảng (1; +∞).
C. Hàm số đồng biến trên khoảng (1; 2).
D. Hàm số nghịch biến trên khoảng (0; 1).
Câu 19. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 3.
B. 10.
C. 12.
√3
4
Câu 20. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
7
5
A. a 8 .
B. a 3 .
C. a 3 .
D. 27.
2
D. a 3 .
Câu 21. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB)
√ bằng
√
√
√
a 6
.
B. a 6.
C. a 3.
D. 2a 6.
A.
2
Câu 22. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 0.
B. 1.
C. 3.
D. 2.
Câu 23. [1] Giá trị của biểu thức 9log3 12 bằng
A. 24.
B. 4.
C. 2.
D. 144.
Câu 24. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 120 cm2 .
C. 160 cm2 .
D. 1200 cm2 .
ln2 x
m
Câu 25. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 24.
B. S = 22.
C. S = 32.
D. S = 135.
Câu 26. Biểu thức nào sau đây khơng
√ 0 có nghĩa
−1
A. (−1) .
B. (− 2) .
C.
√
−1.
−3
D. 0−1 .
Câu 27. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 4.
B. 12.
C. 11.
D. 10.
√
Câu 28. √Xác định phần ảo của số phức z = ( 2 + 3i)2
√
A. −6 2.
B. −7.
C. 7.
D. 6 2.
Trang 2/10 Mã đề 1
Câu 29. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 0.
C. 13.
√
Câu 30. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. .
B. −3.
C. − .
3
3
Câu 31. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm mặt.
B. Hai mặt.
C. Ba mặt.
D. 9.
D. 3.
D. Bốn mặt.
Câu 32.
đề nào sai? Z
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh Z
A.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
B.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
Z
Z
Z
Z
C.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
D.
f (x)g(x)dx =
f (x)dx g(x)dx.
Câu 33. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 4).
B. (1; 3; 2).
C. (2; 4; 6).
D. (2; 4; 3).
Câu 34. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = x + ln x.
B. y0 = 1 − ln x.
Câu 35. Tính lim
x→5
C. y0 = 1 + ln x.
x2 − 12x + 35
25 − 5x
B. +∞.
A. −∞.
C.
2
.
5
D. y0 = ln x − 1.
2
D. − .
5
Câu 36. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 8 m.
B. 16 m.
C. 24 m.
D. 12 m.
Câu 37. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
A. lim [ f (x)g(x)] = ab.
x→+∞
x→+∞
C. lim [ f (x) − g(x)] = a − b.
x→+∞
B. lim [ f (x) + g(x)] = a + b.
x→+∞
D. lim
x→+∞
f (x) a
= .
g(x) b
Câu 38. Thể tích của khối lăng√trụ tam giác đều có cạnh √
bằng 1 là:
3
3
3
B.
.
C.
.
A. .
4
2
4
√
√
4n2 + 1 − n + 2
Câu 39. Tính lim
bằng
2n − 3
A. 2.
B. +∞.
C. 1.
!4x
!2−x
2
3
Câu 40. Tập các số x thỏa mãn
≤
là
3
2
"
!
#
2
2
A. − ; +∞ .
B. −∞; .
3
5
#
2
C. −∞; .
3
√
3
D.
.
12
D.
3
.
2
"
!
2
D.
; +∞ .
5
3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng
√
a
a 2
a
2a
A. .
B.
.
C. .
D.
.
3
3
4
3
Câu 41. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
Trang 3/10 Mã đề 1
1 − n2
Câu 42. [1] Tính lim 2
bằng?
2n + 1
1
1
A. − .
B. .
2
3
C. 0.
D.
1
.
2
Câu 43. [2]√Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 2
A. m = ± 2.
B. m = ± 3.
C. m = ±1.
D. m = ±3.
Câu 44. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 3 mặt.
D. 5 mặt.
Câu 45. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = 0.
B. x = −2.
C. x = −5.
D. x = −8.
Câu 46. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
1
ab
.
B.
.
C.
.
D.
.
A. 2
√
√
√
a + b2
a2 + b2
a2 + b2
2 a2 + b2
Câu 47. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối lập phương.
C. Khối bát diện đều.
D. Khối tứ diện đều.
Câu 48. Khối đa diện đều loại {5; 3} có số mặt
A. 20.
B. 8.
C. 30.
D. 12.
Câu 49. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. Vơ nghiệm.
C. 1.
√
√
Câu 50.
Tìm
giá
trị
lớn
nhất
của
hàm
số
y
=
x
+
3
+
6−x
√
√
B. 2 + 3.
C. 3.
A. 2 3.
Câu 51. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 2 nghiệm.
B. 1 nghiệm.
C. Vô nghiệm.
D. 3.
√
D. 3 2.
D. 3 nghiệm.
Câu 52. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 3 mặt.
D. 4 mặt.
Câu 53. Khối đa diện đều loại {3; 3} có số cạnh
A. 4.
B. 8.
C. 5.
Câu 54. Hàm số f có nguyên hàm trên K nếu
A. f (x) xác định trên K.
C. f (x) có giá trị lớn nhất trên K.
B. f (x) có giá trị nhỏ nhất trên K.
D. f (x) liên tục trên K.
D. 6.
Câu 55. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n lần.
B. n3 lần.
C. n2 lần.
D. 3n3 lần.
Câu 56. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Cả hai đều sai.
Câu 57. Tìm giới hạn lim
A. 1.
2n + 1
n+1
B. 2.
C. Chỉ có (I) đúng.
D. Cả hai đều đúng.
C. 0.
D. 3.
Trang 4/10 Mã đề 1
Câu 58. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng
√
a 3
a
a
B. a.
C.
.
D. .
A. .
2
2
3
2
x −9
Câu 59. Tính lim
x→3 x − 3
A. 3.
B. −3.
C. 6.
D. +∞.
x = 1 + 3t
Câu 60. [1232h] Trong không gian Oxyz, cho đường thẳng d :
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua
z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
trình là
x
=
−1
+
2t
x
=
1
+
7t
x
=
−1
+
2t
x = 1 + 3t
A.
.
C.
y = −10 + 11t . B.
y=1+t
y = −10 + 11t . D.
y = 1 + 4t .
z = −6 − 5t
z = 1 + 5t
z = 6 − 5t
z = 1 − 5t
Câu 61. Tính lim
x→+∞
A. −3.
x−2
x+3
2
B. − .
3
C. 2.
D. 1.
√
√
Câu 62. Phần thực√và phần ảo của số √
phức z = 2 − 1 − 3i lần lượt √l
√
A. Phần thực là 2 −√1, phần ảo là √
3.
B. Phần thực là √2, phần ảo là 1 − √
3.
D. Phần thực là 2 − 1, phần ảo là − 3.
C. Phần thực là 1 − 2, phần ảo là − 3.
Câu 63. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 10 mặt.
C. 8 mặt.
Câu 64. Dãy số nào có giới hạn bằng 0?
!n
6
2
.
A. un = n − 4n.
B. un =
5
!n
−2
C. un =
.
3
D. 6 mặt.
D. un =
n3 − 3n
.
n+1
Câu 65. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
A. .
B. .
C. 3.
D. 1.
2
2
1
Câu 66. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; 3).
B. (−∞; 1) và (3; +∞). C. (−∞; 3).
D. (1; +∞).
Câu 67. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể
√ tích khối chóp S .ABCD là
3
10a 3
A. 10a3 .
B.
.
C. 40a3 .
D. 20a3 .
3
2n + 1
Câu 68. Tính giới hạn lim
3n + 2
3
1
2
A. .
B. .
C. .
D. 0.
2
2
3
Câu 69. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối√chóp S .ABMN là
√
√
√
a3 3
4a3 3
2a3 3
5a3 3
A.
.
B.
.
C.
.
D.
.
2
3
3
3
Trang 5/10 Mã đề 1
Câu 70. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 27 m.
C. 1587 m.
D. 25 m.
Câu 71. Phát biểu nào sau đây là sai?
1
A. lim un = c (un = c là hằng số).
B. lim = 0.
n
1
D. lim qn = 0 (|q| > 1).
C. lim k = 0.
n
Câu 72. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; 3).
B. A0 (−3; 3; 3).
C. A0 (−3; 3; 1).
D. A0 (−3; −3; −3).
Câu 73. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
.
C. log2 a = loga 2.
D. log2 a =
.
A. log2 a = − loga 2.
B. log2 a =
log2 a
loga 2
n−1
Câu 74. Tính lim 2
n +2
A. 3.
B. 2.
C. 1.
D. 0.
Câu 75. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 10 năm.
B. 7 năm.
C. 8 năm.
D. 9 năm.
Câu 76. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 70, 128 triệu đồng. B. 3, 5 triệu đồng.
C. 20, 128 triệu đồng. D. 50, 7 triệu đồng.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 77. [3-12217d] Cho hàm số y = ln
x+1
0
y
0
y
A. xy = e + 1.
B. xy = −e + 1.
C. xy0 = −ey − 1.
D. xy0 = ey − 1.
Câu 78. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 10 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 79. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 22 triệu đồng.
B. 3, 03 triệu đồng.
C. 2, 20 triệu đồng.
D. 2, 25 triệu đồng.
Câu 80. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. V = 4π.
B. 16π.
C. 8π.
D. 32π.
1
Câu 81. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. .
B. 3.
C. −3.
D. − .
3
3
√
Câu 82. [1] Biết log6 a = 2 thì log6 a bằng
A. 108.
B. 36.
C. 4.
D. 6.
Trang 6/10 Mã đề 1
Câu 83. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 2.
B. 6.
C. 1.
D. −1.
Câu 84. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
β.
=
a
aβ
Câu 85. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
=
=
và d0 :
=
=
đường thẳng d :
2
3
−5
3
−2
−1
x−2 y−2 z−3
x y−2 z−3
A.
=
=
.
B. =
=
.
2
3
4
2
3
−1
x y z−1
x−2 y+2 z−3
=
=
.
D. = =
.
C.
2
2
2
1 1
1
Câu 86. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m < 0.
B. m , 0.
C. m > 0.
D. m = 0.
A. aαβ = (aα )β .
B. aα bα = (ab)α .
C. aα+β = aα .aβ .
D.
Câu 87. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 8.
B. 3.
C. 4.
D. 6.
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
d = 90◦ , ABC
Câu 88. Cho hình chóp S .ABC có BAC
Thể tích khối chóp S .ABC là
√
√
√
3
3
3
√
3
a
3
a
2
a
A. 2a2 2.
.
C.
.
D.
.
B.
24
12
24
Câu 89. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
A. 1.
B. .
C. 2.
D.
.
2
2
Câu 90.
đề nào sau đây sai?
Z [1233d-2] Mệnh
Z
k f (x)dx = k
A.
Z
B.
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
D.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
C.
Câu 91. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.
C. Khối lập phương.
D. Khối bát diện đều.
Câu 92. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lập phương.
B. Khối tứ diện.
C. Khối bát diện đều.
D. Khối lăng trụ tam giác.
x2
Câu 93. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 0.
B. M = e, m = .
C. M = e, m = 1.
D. M = , m = 0.
e
e
3
2
Câu 94. Tìm m để hàm số y = mx + 3x + 12x + 2 đạt cực đại tại x = 2
A. m = −3.
B. m = 0.
C. m = −1.
D. m = −2.
!
1
1
1
Câu 95. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
A. 2.
B. +∞.
C. .
D. .
2
2
Trang 7/10 Mã đề 1
Câu 96. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5}.
B. {3}.
C. {5; 2}.
D. {2}.
12 + 22 + · · · + n2
Câu 97. [3-1133d] Tính lim
n3
1
2
A. .
B. +∞.
C. 0.
D. .
3
3
Câu 98. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
là
√ hình chóp S .ABCD với
√mặt phẳng (AIC) có diện tích
√
2
2
2
2
a 7
a 5
a 2
11a
A.
.
B.
.
C.
.
D.
.
8
16
4
32
Câu 99. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. −7, 2.
B. 72.
C. 7, 2.
D. 0, 8.
Câu 100. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
13
23
5
9
.
B.
.
C. −
.
D. − .
A.
25
100
100
16
2
Câu 101. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 3 − log2 3.
B. 1 − log3 2.
C. 2 − log2 3.
D. 1 − log2 3.
Câu 102. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = −10.
C. P = 21.
D. P = −21.
3
Câu 103. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e.
B. e3 .
C. e2 .
D. e5 .
Câu 104. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B. Số cạnh của khối chóp bằng số mặt của khối chóp.
C. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D. Số đỉnh của khối chóp bằng số mặt của khối chóp.
x+1
bằng
x→+∞ 4x + 3
B. 1.
Câu 105. Tính lim
A. 3.
C.
1
.
4
D.
1
.
3
Câu 106. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên khoảng (−2; 1).
B. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
Câu 107. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {5; 3}.
B. {4; 3}.
C. {3; 4}.
D. {3; 5}.
!
3n + 2
2
Câu 108. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 2.
B. 4.
C. 5.
D. 3.
3
2
Câu 109. Giá
√ trị cực đại của hàm số√y = x − 3x − 3x + 2 √
A. −3 + 4 2.
B. 3 − 4 2.
C. 3 + 4 2.
√
D. −3 − 4 2.
Trang 8/10 Mã đề 1
[ = 60◦ , S O
Câu 110. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√
√ với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S BC) bằng
√
a 57
2a 57
a 57
D.
A.
.
B.
.
C. a 57.
.
19
17
19
Câu 111. Khối đa diện đều loại {3; 4} có số đỉnh
A. 8.
B. 4.
C. 10.
D. 6.
Câu 112. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa
√ hai đường thẳng BD và√S C bằng
√
√
a 6
a 6
a 6
A.
.
B.
.
C.
.
D. a 6.
2
6
3
1
Câu 113. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 0 < m ≤ 1.
C. 0 ≤ m ≤ 1.
D. 2 ≤ m ≤ 3.
Câu 114. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 2.
B. 4.
cos n + sin n
Câu 115. Tính lim
n2 + 1
A. 1.
B. 0.
C. 1.
D. 3.
C. +∞.
D. −∞.
d = 300 .
Câu 116. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
0
Độ dài cạnh bên
√ CC = 3a. Thể tích V của khối lăng trụ đã cho.
√
3
√
a 3
3a3 3
3
3
A. V =
C. V = 6a .
D. V =
.
B. V = 3a 3.
.
2
2
Câu 117. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0)
lần lượt là hình
! chiếu của B, C lên các !cạnh AC, AB. Tọa độ hình!chiếu của A lên BC là
7
8
5
; 0; 0 .
; 0; 0 .
; 0; 0 .
B.
C.
D. (2; 0; 0).
A.
3
3
3
log 2x
Câu 118. [1229d] Đạo hàm của hàm số y =
là
x2
1 − 2 log 2x
1
1 − 4 ln 2x
1 − 2 ln 2x
A. y0 = 3
.
B. y0 =
.
C. y0 = 3
.
D. y0 =
.
3
x ln 10
x
2x ln 10
2x3 ln 10
Câu 119. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. .
C. .
D. 4.
4
8
2
1
Câu 120. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2] ∪ [−1; +∞). B. −2 < m < −1.
C. (−∞; −2) ∪ (−1; +∞). D. −2 ≤ m ≤ −1.
Câu 121. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 3
a3 5
a3 5
A.
.
B.
.
C.
.
D.
.
4
12
12
6
Trang 9/10 Mã đề 1
Câu 122. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 2.
B. +∞.
C. 0.
Câu 123. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −2.
B. 4.
C. −4.
D. 1.
D. 2.
Câu 124. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
C. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 125. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 4 mặt. B. 4 đỉnh, 8 cạnh, 4 mặt. C. 4 đỉnh, 6 cạnh, 4 mặt. D. 3 đỉnh, 3 cạnh, 3 mặt.
Câu 126. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích
hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 5.
B. 0, 2.
C. 0, 3.
D. 0, 4.
Câu 127. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 1; 6).
B. ~u = (1; 0; 2).
C. ~u = (2; 2; −1).
D. ~u = (3; 4; −4).
Câu 128.
√ [4-1246d] Trong tất cả
√ các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất của |z|
A. 5.
B. 3.
C. 1.
D. 2.
√
Câu 129. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là
√
√
√
a3 3
a3 3
a3
3
.
B. a 3.
C.
.
D.
.
A.
4
12
3
Câu 130. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −3.
B. −7.
C. Không tồn tại.
D. −5.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
B
C
3.
5.
6.
C
B
10.
C
12. A
14.
B
15.
D
17.
16.
C
19. A
21.
B
8. A
11. A
13.
C
4. A
B
7.
9.
2.
B
D
18.
D
20.
D
24.
C
D
D
B
28.
29.
B
30. A
31.
C
32.
33.
C
34.
35.
C
36.
37.
D
C
B
C
40. A
D
43.
D
38.
C
41.
C
26.
27.
39.
B
22. A
23.
25.
D
42. A
C
44.
B
B
45.
D
46.
47.
D
48.
D
50.
D
49.
C
51. A
52.
53.
D
54.
55.
B
56. A
57.
B
58.
59.
C
D
B
60.
61.
D
62.
63.
D
64.
65. A
67.
C
66.
D
68.
1
C
D
C
B
C
69. A
70.
B
B
71.
D
72.
73.
D
74.
75.
D
76.
C
77.
D
78.
C
81.
79. A
C
82.
83.
D
84.
86.
87.
D
90. A
94.
D
91.
C
95. A
98. A
99. A
C
101.
102.
D
103.
104.
D
105.
B
D
D
D
113. A
B
115.
116.
D
117.
118. A
B
C
119. A
120.
D
122.
121.
C
123. A
C
B
125.
127.
C
128.
130.
C
111.
D
126.
D
109. A
114.
124.
C
107.
C
110.
112.
B
C
97. A
108.
D
89.
96. A
106.
B
93. A
B
100.
D
85.
B
88.
92.
D
129.
D
C
2
C
B
D