TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1.
− i| = 1. Tìm giá trị lớn nhất của |z|
√ [4-1246d] Trong tất cả các số phức z thỏa mãn |z √
A. 5.
B. 1.
C. 3.
D. 2.
Câu 2. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 10 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
x+2
đồng biến trên khoảng
Câu 3. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x + 5m
(−∞; −10)?
A. Vô số.
B. 3.
C. 2.
D. 1.
Câu 4. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 3.
B. 1.
C. 2.
D. +∞.
Câu 5. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm
3
dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6 giây
2
cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 1587 m.
B. 27 m.
C. 25 m.
D. 387 m.
Câu 6. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác S AB đều và nằm trong mặt
Thể tích khối chóp
√ S .ABCD là
√ phẳng vng góc với 3(ABCD).
√
3
3
√
a 3
a 3
a 2
B.
.
C.
.
D.
.
A. a3 3.
2
4
2
Câu 7. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất của hàm số. Khi đó tổng
√M + m
√
√
C. 7 3.
D. 8 3.
A. 16.
B. 8 2.
Câu 8. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
A. −e.
B. − 2 .
C. − .
e
e
Z 1
Câu 9. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
D. −
1
.
2e
0
1
1
A. .
B. .
4
2
Câu 10. Dãy số nào sau đây có giới hạn khác 0?
1
n+1
A. √ .
B.
.
n
n
C. 1.
C.
1
.
n
D. 0.
D.
sin n
.
n
Câu 11. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc√với đáy và S C = a 3. √
Thể tích khối chóp S .ABC√là
√
3
3
2a 6
a 3
a3 3
a3 6
A.
.
B.
.
C.
.
D.
.
9
2
4
12
Câu 12. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 9.
C. 0.
D. 13.
Câu 13. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1134 m.
B. 2400 m.
C. 1202 m.
D. 6510 m.
Trang 1/10 Mã đề 1
√
x2 + 3x + 5
Câu 14. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. − .
B. 1.
C. 0.
D. .
4
4
Câu 15. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 16. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt√bên (S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
3
3
3
3
a 3
8a 3
4a 3
8a 3
A.
.
B.
.
C.
.
D.
.
9
9
9
3
Câu 17. Phát biểu nào sau đây là sai?
1
A. lim √ = 0.
B. lim qn = 1 với |q| > 1.
n
1
C. lim un = c (Với un = c là hằng số).
D. lim k = 0 với k > 1.
n
!4x
!2−x
2
3
Câu 18. Tập các số x thỏa mãn
≤
là
3 # 2
#
"
!
"
!
2
2
2
2
B. −∞; .
C.
; +∞ .
D. − ; +∞ .
A. −∞; .
3
5
5
3
Câu 19. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 6).
B. (1; 3; 2).
C. (2; 4; 3).
D. (2; 4; 4).
Câu 20. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
Câu 21. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng
√
√
√
a 6
a 6
a 6
.
B. a 6.
.
D.
.
A.
C.
2
6
3
2
2
sin x
Câu 22. [3-c]
+ 2cos x lần lượt là
√ Giá trị nhỏ nhất và√giá trị lớn nhất của hàm√số f (x) = 2
A. 2 và 2 2.
B. 2 2 và 3.
C. 2 và 3.
D. 2 và 3.
Z 2
ln(x + 1)
Câu 23. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. −3.
B. 0.
C. 3.
D. 1.
Câu 24. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5}.
B. {5; 2}.
C. {3}.
D. {2}.
tan x + m
Câu 25. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
π
0; .
4
A. (−∞; 0] ∪ (1; +∞). B. [0; +∞).
C. (1; +∞).
D. (−∞; −1) ∪ (1; +∞).
2mx + 1
1
Câu 26. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 0.
B. −5.
C. −2.
D. 1.
Trang 2/10 Mã đề 1
Câu 27. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.
C. Khối tứ diện đều.
Câu 28. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m < 0.
B. m , 0.
C. m = 0.
D. Khối lập phương.
D. m > 0.
Câu 29. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Hai mặt.
B. Ba mặt.
C. Một mặt.
D. Bốn mặt.
q
2
Câu 30. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [0; 4].
C. m ∈ [0; 2].
D. m ∈ [−1; 0].
d = 120◦ .
Câu 31. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
A. 4a.
B. 2a.
C. 3a.
D.
2
1
Câu 32. Hàm số y = x + có giá trị cực đại là
x
A. −1.
B. 2.
C. 1.
D. −2.
Câu 33. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {0}.
B. D = (0; +∞).
C. D = R \ {1}.
D. D = R.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 34. Cho hình chóp S .ABC có BAC
Thể tích khối chóp S .ABC là
√
√
√
√
a3 3
a3 3
a3 2
2
B.
A. 2a 2.
.
C.
.
D.
.
24
12
24
Câu 35. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 3.
B. 2.
C. 0.
D. 1.
Câu 36. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối bát diện đều.
B. Khối lập phương.
C. Khối lăng trụ tam giác.
D. Khối tứ diện.
Câu 37. Tứ diện đều thuộc loại
A. {3; 4}.
B. {4; 3}.
1 − n2
Câu 38. [1] Tính lim 2
bằng?
2n + 1
1
B. 0.
A. .
3
C. {5; 3}.
C.
1
.
2
D. {3; 3}.
1
D. − .
2
√
Câu 39. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 64.
C. 63.
D. Vơ số.
log 2x
là
Câu 40. [3-1229d] Đạo hàm của hàm số y =
x2
1 − 4 ln 2x
1 − 2 log 2x
1 − 2 ln 2x
1
A. y0 =
.
B. y0 =
.
C. y0 = 3
.
D. y0 = 3
.
3
3
2x ln 10
x
x ln 10
2x ln 10
Câu 41. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 23.
C. 24.
D. 21.
Câu 42. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = −10.
C. P = 21.
D. P = −21.
Trang 3/10 Mã đề 1
Câu 43. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
√
√
√
√
a 6
B.
D. a 3.
A. 2a 6.
.
C. a 6.
2
0 0 0 0
0
Câu 44.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 3
a 6
A.
.
B.
.
C.
.
D.
.
7
2
2
3
!
1
1
1
+
+ ··· +
Câu 45. Tính lim
1.2 2.3
n(n + 1)
3
A. 0.
B. 2.
C. 1.
D. .
2
Câu 46. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. Cả ba mệnh đề.
B. (II) và (III).
C. (I) và (III).
D. (I) và (II).
1
Câu 47. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2] ∪ [−1; +∞). B. −2 < m < −1.
C. −2 ≤ m ≤ −1.
D. (−∞; −2) ∪ (−1; +∞).
Câu 48. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim+ f (x) = f (b).
B. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim+ f (x) = f (a) và lim− f (x) = f (b).
D. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a
x→b
x→a
x→b
Câu 49. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
2a
8a
a
5a
.
B.
.
C. .
D.
.
A.
9
9
9
9
√
Câu 50. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √
√
√
3
a 2
a 6
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
6
18
6
36
3a
, hình chiếu vng
Câu 51. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng
√
2a
a
a 2
a
A.
.
B. .
C.
.
D. .
3
3
3
4
Câu 52. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
B. Số đỉnh của khối chóp bằng số mặt của khối chóp.
C. Số cạnh của khối chóp bằng số mặt của khối chóp.
D. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
Trang 4/10 Mã đề 1
x−3 x−2 x−1
x
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [2; +∞).
B. (−∞; 2).
C. (−∞; 2].
D. (2; +∞).
Câu 53. [4-1213d] Cho hai hàm số y =
Câu 54. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
ab
1
1
.
B. √
.
C. 2
.
.
D. √
A. √
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
Câu 55. Bát diện đều thuộc loại
A. {4; 3}.
B. {3; 3}.
C. {5; 3}.
D. {3; 4}.
Câu 56. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 7 năm.
B. 8 năm.
C. 9 năm.
D. 10 năm.
Câu 57. Mệnh đề nào sau đây sai?
Z
A. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
!0
Z
B.
f (x)dx = f (x).
f (x)dx = F(x) + C.
C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
D. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
2−n
bằng
Câu 58. Giá trị của giới hạn lim
n+1
A. −1.
B. 0.
C. 2.
Câu 59. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 7, 2.
B. 72.
C. 0, 8.
D. 1.
D. −7, 2.
Câu 60. Hàm số nào sau đây khơng có cực trị
1
x−2
A. y = x4 − 2x + 1.
B. y = x + .
C. y = x3 − 3x.
D. y =
.
x
2x + 1
Câu 61. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ là
√ Thể tích khối chóp S 3.ABC
√
√
3
a 3
a 2
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
4
12
12
6
Câu 62. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 3 mặt.
C. 9 mặt.
D. 6 mặt.
√
Câu 63. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị ngun dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vô số.
B. 62.
C. 64.
D. 63.
Câu 64. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
3
Câu 65. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e.
B. e3 .
C. e5 .
D. e2 .
Trang 5/10 Mã đề 1
Câu 66. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tam giác và một hình chóp tứ giác.
B. Hai hình chóp tứ giác.
C. Một hình chóp tứ giác và một hình chóp ngũ giác.
D. Hai hình chóp tam giác.
Câu 67. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 4 mặt. B. 4 đỉnh, 8 cạnh, 4 mặt. C. 3 đỉnh, 3 cạnh, 3 mặt. D. 4 đỉnh, 6 cạnh, 4 mặt.
Câu 68. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−1; 3].
B. [−3; 1].
C. [1; +∞).
D. (−∞; −3].
Câu 69. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
.
D. log2 a =
.
A. log2 a = − loga 2.
B. log2 a = loga 2.
C. log2 a =
loga 2
log2 a
x−2
Câu 70. Tính lim
x→+∞ x + 3
2
A. − .
B. 1.
3
C. −3.
D. 2.
Câu 71. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2
A. 2.
B. 4.
Câu 72. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 6.
3
Z
6
3x + 1
C. −1.
D. 6.
C. 12.
D. 10.
. Tính
1
f (x)dx.
0
Câu 73. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −9.
B. −5.
C. −15.
D. −12.
x
Câu 74. Tính diện tích hình phẳng
√ giới hạn bởi các đường y = xe , y = 0, x = 1.
3
1
A. .
B.
.
C. 1.
D.
2
2
Câu 75. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là
vng góc
√ với mặt đáy và S O = a. Khoảng cách từ A đến (S
√ BC) bằng
√
a 57
a 57
A.
.
B. a 57.
C.
.
D.
19
17
Câu 76. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều. C. Khối 20 mặt đều.
D.
3
.
2
[ = 60◦ , S O
a. Góc BAD
√
2a 57
.
19
Khối tứ diện đều.
Câu 77. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 + 2e
1 − 2e
1 + 2e
A. m =
.
B. m =
.
C. m =
.
D. m =
.
4e + 2
4e + 2
4 − 2e
4 − 2e
Câu 78. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 0.
B. e2016 .
C. 1.
D. 22016 .
Câu 79. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 2).
B. (−∞; 0) và (2; +∞). C. (0; +∞).
D. (0; 2).
Câu 80. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 12.
B. ln 14.
C. ln 4.
D. ln 10.
Trang 6/10 Mã đề 1
Câu 81. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. −1.
B. 2.
C. 6.
D. 1.
Câu 82. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −2e2 .
B. −e2 .
C. 2e2 .
D. 2e4 .
Câu 83. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. V = 4π.
B. 16π.
C. 8π.
D. 32π.
Câu 84. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên khoảng (−2; 1).
B. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
C. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 85. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Bát diện đều.
B. Nhị thập diện đều. C. Thập nhị diện đều.
D. Tứ diện đều.
x
9
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
+3
1
A. 2.
B. 1.
C. −1.
D. .
2
3
Câu 87. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 160 cm2 .
C. 1200 cm2 .
D. 160 cm2 .
Câu 86. [2-c] Cho hàm số f (x) =
9x
Câu 88. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 7 mặt.
D. 8 mặt.
Câu 89. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (0; −2).
B. (2; 2).
C. (1; −3).
D. (−1; −7).
Câu 90. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. 6.
B. .
C. 9.
D. .
2
2
Câu 91. Khối đa diện đều loại {5; 3} có số mặt
A. 8.
B. 30.
C. 12.
D. 20.
1
Câu 92. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (−∞; 1).
B. D = (1; +∞).
C. D = R \ {1}.
Câu 93.
Z Các khẳng định nào sau
Z đây là sai?
A.
Z
C.
Z
D. D = R.
!0
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C. B.
f (x)dx = f (x).
Z
Z
Z
k f (x)dx = k
f (x)dx, k là hằng số.
D.
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C.
2
Câu 94. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log2 3.
B. 1 − log3 2.
C. 2 − log2 3.
D. 3 − log2 3.
2
Câu 95. Tính
√ mơ đun của số phức z biết (1 + 2i)z = 3 + 4i. √4
A. |z| = 2 5.
B. |z| = 5.
C. |z| = 5.
D. |z| =
√
5.
Câu 96. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 2.
B. +∞.
C. 1.
D. 0.
Trang 7/10 Mã đề 1
!
1
1
1
Câu 97. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
A. .
B. +∞.
C. .
D. 2.
2
2
Câu 98. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m ≥ 3.
C. m ≤ 3.
D. m < 3.
Câu 99. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 4.
B. 3.
C. 1.
D. 2.
Câu 100. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.
B. lim f (x) = f (a).
x→a
x→a
x→a
C. f (x) có giới hạn hữu hạn khi x → a.
D. lim+ f (x) = lim− f (x) = a.
x→a
Câu 101. Cho f (x) = sin x − cos x − x. Khi đó f (x) bằng
A. −1 + sin x cos x.
B. −1 + 2 sin 2x.
C. 1 + 2 sin 2x.
2
2
x→a
0
D. 1 − sin 2x.
Câu 102. Phát biểu nào sau đây là sai?
A. lim qn = 0 (|q| > 1).
1
C. lim = 0.
n
B. lim un = c (un = c là hằng số).
1
D. lim k = 0.
n
√3
4
Câu 103. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
5
7
2
B. a 8 .
C. a 3 .
D. a 3 .
A. a 3 .
Câu 104. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
1
A. 5.
B. .
C. 25.
5
Câu 105. Khẳng định nào sau đây đúng?
A. Hình lăng trụ tứ giác đều là hình lập phương.
B. Hình lăng trụ đứng là hình lăng trụ đều.
C. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
√
√
D.
5.
Câu 106. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là 1.
B. Phần thực là −1, phần ảo là 4.
C. Phần thực là −1, phần ảo là −4.
D. Phần thực là 4, phần ảo là −1.
Câu 107. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m ≥ 3.
C. m ≤ 3.
D. m > 3.
x−3
bằng?
Câu 108. [1] Tính lim
x→3 x + 3
A. 0.
B. −∞.
C. +∞.
D. 1.
Câu 109. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −2.
B. −4.
C.
.
D. −7.
27
Trang 8/10 Mã đề 1
Câu 110.
Trong các khẳng định sau, khẳng định nào sai?Z
Z
xα+1
+ C, C là hằng số.
B.
0dx = C, C là hằng số.
A.
xα dx =
α+1
Z
Z
1
C.
dx = ln |x| + C, C là hằng số.
D.
dx = x + C, C là hằng số.
x
Câu 111. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −7.
B. −3.
C. Không tồn tại.
D. −5.
x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 3.
C. x = 1.
D. x = 2.
1 + 2 + ··· + n
Câu 113. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = .
2
C. lim un = 0.
D. lim un = 1.
1
Câu 114. [1] Giá trị của biểu thức log √3
bằng
10
1
1
B. −3.
C. 3.
D. .
A. − .
3
3
0 0 0
Câu 115. [4-1214h] Cho khối lăng trụ ABC.A B C , khoảng cách √
từ C đến đường thẳng BB0 bằng 2, khoảng
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3
√
√
2 3
A.
.
B. 2.
C. 3.
D. 1.
3
Câu 116. Cho số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z −√2 − 2i|. Tính |z|.
√
A. |z| = 10.
B. |z| = 17.
C. |z| = 10.
D. |z| = 17.
Câu 112. Hàm số y =
A. x = 0.
Câu 117. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng
√
√
√
a 2
a 2
A. 2a 2.
B.
.
C.
.
D. a 2.
4
2
2
Câu 118. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
2
1
1
A. √ .
B.
.
C. 3 .
D. 2 .
3
2e
e
e
2 e
√
√
Câu 119. Phần thực
√ và phần ảo của số√phức z = 2 − 1 − 3i lần lượt l √
√
A. Phần thực là √2 − 1, phần ảo là √3.
B. Phần thực là 1√− 2, phần ảo là − √3.
C. Phần thực là 2, phần ảo là 1 − 3.
D. Phần thực là 2 − 1, phần ảo là − 3.
Câu 120. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
A. aα bα = (ab)α .
B. aα+β = aα .aβ .
C. β = a β .
D. aαβ = (aα )β .
a
Câu 121. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai ngun hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
Trang 9/10 Mã đề 1
A. Câu (III) sai.
B. Khơng có câu nào C. Câu (II) sai.
D. Câu (I) sai.
sai.
Câu 122. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc
60◦ . Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n.
Thể tích khối
√
√
√ chóp S .ABMN là 3 √
3
5a 3
2a3 3
a3 3
4a 3
.
B.
.
C.
.
D.
.
A.
3
3
3
2
x−1 y z+1
Câu 123. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =
và
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x + y − z = 0.
B. 2x − y + 2z − 1 = 0.
C. −x + 6y + 4z + 5 = 0.
D. 10x − 7y + 13z + 3 = 0.
Câu 124. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
B. 18.
C. 27.
D. 12.
A.
2
Câu 125. Dãy
0?
!n số nào có giới hạn bằng
!n
6
n3 − 3n
−2
A. un =
.
B. un =
.
C. un =
.
D. un = n2 − 4n.
5
n+1
3
Câu 126. Cho hình chóp S .ABCD có√đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp S .ABCD là
√
4a3
2a3 3
2a3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 127. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung
điểm cạnh AB, biết S H ⊥ (ABCD).√Thể tích khối chóp S .ABCD
√ là
3
3
3
a
4a 3
2a 3
a3
A.
.
B.
.
C.
.
D.
.
3
3
3
6
Câu 128. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 3.
C. 2.
D. Vô nghiệm.
Câu 129. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 212 triệu.
B. 220 triệu.
C. 210 triệu.
D. 216 triệu.
Câu 130. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. Vô số.
B. 2.
C. 1.
D. 3.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
D
1.
C
3.
5.
B
6.
B
D
8.
B
10.
11.
D
12.
13.
D
14. A
C
15.
17.
C
4.
7. A
9.
D
2.
16.
C
B
18.
B
19. A
C
21.
B
23. A
D
20.
B
22.
B
24. A
25.
26. A
C
27.
D
28.
29.
D
30.
D
31.
D
32.
D
33.
D
34.
D
36.
D
38.
D
C
35.
37.
D
B
39. A
40.
41. A
42.
D
C
43.
C
44.
D
45.
C
46.
D
47.
C
48.
49.
B
C
50.
B
51. A
52.
B
53. A
54.
B
55.
D
57.
56.
58. A
C
59.
D
61.
60.
63.
C
64.
D
65.
66.
D
67.
68.
C
B
69.
1
D
B
C
D
C
70.
71.
B
B
72.
C
73.
D
74.
C
75.
D
76.
C
77. A
78. A
79.
80.
B
81.
82.
B
84.
85.
86.
C
D
87.
92.
C
D
93.
B
D
B
B
B
100.
101.
B
102. A
D
105.
C
98.
99.
103.
B
96.
D
97.
D
94.
C
95.
104.
C
106.
C
B
D
108. A
109. A
110. A
111.
C
112.
113.
B
114. A
115.
B
116.
117.
D
C
D
120.
C
122.
B
123.
D
125.
C
118.
C
119.
127.
D
90.
91.
121.
C
88. A
89. A
107.
B
124.
D
B
126. A
C
128. A
B
129. A
130.
2
B