Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg 3 (519)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (149.24 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Khối đa diện đều loại {5; 3} có số mặt
A. 8.
B. 12.

C. 20.

D. 30.

Câu 2.
mệnh đề sau, mệnh đềZ nào sai? Z
Z Cho hàm số f (x),
Z g(x) liên
Z tục trên R. Trong các Z
A.
f (x)g(x)dx =
f (x)dx g(x)dx.
B.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
Z
Z


Z
Z
C.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
D.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
[ = 60◦ , S A ⊥ (ABCD). Biết
Câu 3. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
rằng khoảng
√ cách từ A đến cạnh 3S√C là a. Thể tích khối chóp S .ABCD là

3

a 2
a 3
a3 2
3
A.
.
B.
.
C. a 3.
D.
.
12
6
4
Câu 4. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)

hợp với đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là


3
3
3

3
2a
3
a
3
a
A. a3 3.
.
C.
.
D.
.
B.
3
3
6
1
Câu 5. Hàm số y = x + có giá trị cực đại là
x
A. 2.
B. −1.
C. 1.
D. −2.

Câu 6. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 1.
B. −1.
C. 6.

D. 2.

d = 120◦ .
Câu 7. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
B. 2a.
C. 3a.
D. 4a.
A.
2
Câu 8. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số đồng biến trên khoảng (1; 2).
B. Hàm số nghịch biến trên khoảng (1; +∞).
C. Hàm số nghịch biến trên khoảng (−∞; 0).
D. Hàm số nghịch biến trên khoảng (0; 1).
q
2
Câu 9. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [0; 2].

C. m ∈ [0; 1].
D. m ∈ [−1; 0].

Câu 10.
phức z = ( 2 + 3i)2
√ Xác định phần ảo của số √
A. 6 2.
B. −6 2.
C. −7.
D. 7.

Câu 11. √
Thể tích của khối lập phương có cạnh bằng a 2
3


2a 2
A.
.
B. 2a3 2.
C. V = a3 2.
D. V = 2a3 .
3
Câu 12. Khối đa diện đều loại {3; 3} có số đỉnh
A. 4.
B. 5.
C. 3.
D. 2.
Câu 13. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).

A. (−∞; −3].
B. [−1; 3].
C. [−3; 1].
D. [1; +∞).
Trang 1/10 Mã đề 1


log2 240 log2 15

+ log2 1 bằng
log3,75 2 log60 2
B. −8.
C. 4.

Câu 14. [1-c] Giá trị biểu thức
A. 1.

D. 3.

Câu 15. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; −3).
B. A0 (−3; −3; 3).
C. A0 (−3; 3; 1).
D. A0 (−3; 3; 3).
Câu 16.
√ [4-1246d] Trong tất cả các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất của |z|
B. 1.
C. 3.
D. 2.

A. 5.
1
Câu 17. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = −3.
B. −3 ≤ m ≤ 4.
C. m = −3, m = 4.
D. m = 4.
Câu 18. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. 3.
B. .
C. .
D. 1.
2
2
log(mx)
Câu 19. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m > 4.
B. m ≤ 0.
C. m < 0 ∨ m = 4.
D. m < 0.
Câu 20. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.

!
un
B. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
!
un
C. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn !
un
= 0.
D. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
vn



x = 1 + 3t




Câu 21. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có

phương
 trình là











x
=
1
+
3t
x
=
1
+
7t
x
=
−1
+
2t
x = −1 + 2t

















A. 
B. 
.
C. 
y = 1 + 4t .
y=1+t
y = −10 + 11t . D. 
y = −10 + 11t .

















z = 1 − 5t
z = 1 + 5t
z = 6 − 5t
z = −6 − 5t
Câu 22. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 1.

B. 0.

C. 3.

D. 2.

Câu 23. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1

A. m < .
B. m ≥ .
C. m > .
D. m ≤ .
4
4
4
4
Trang 2/10 Mã đề 1


Câu 24. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 2.
B. 1.
C. 3.
D. 7.
x
x−3 x−2 x−1
Câu 25. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2).
B. (−∞; 2].

C. (2; +∞).
D. [2; +∞).
Câu 26. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt√bên (S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
3
3
3
3
a 3
8a 3
8a 3
4a 3
A.
.
B.
.
C.
.
D.
.
9
3
9
9
Câu 27. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 10 mặt.
C. 6 mặt.


D. 8 mặt.

Câu 28. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −8.
B. x = 0.
C. x = −5.
D. x = −2.
2n + 1
Câu 29. Tính giới hạn lim
3n + 2
3
2
1
A. .
B. .
C. .
D. 0.
2
3
2
Câu 30. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.
B. f (x) có giới hạn hữu hạn khi x → a.
x→a

x→a

C. lim f (x) = f (a).
x→a


D. lim+ f (x) = lim− f (x) = a.
x→a

x→a

Câu 31. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)

cùng vng

√ góc với đáy, S C = a3 3. Thể tích khối chóp S 3.ABCD
3
a
a 3
a 3
.
B.
.
C.
.
D. a3 .
A.
9
3
3
Câu 32. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai cạnh.
B. Ba cạnh.
C. Năm cạnh.
D. Bốn cạnh.

Câu 33. Hàm số nào sau đây khơng có cực trị
x−2
1
A. y =
.
B. y = x + .
2x + 1
x

C. y = x4 − 2x + 1.

D. y = x3 − 3x.
q
2
Câu 34. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [−1; 0].
C. m ∈ [0; 2].
D. m ∈ [0; 1].
Câu 35. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của hình chóp S .ABCD với√mặt phẳng (AIC) có diện√tích là

2
a 2
11a2

a2 5
a2 7
A.
.
B.
.
C.
.
D.
.
4
32
16
8
mx − 4
Câu 36. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 45.
B. 34.
C. 26.
D. 67.
Câu 37. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là 4.
B. Phần thực là −3, phần ảo là 4.
C. Phần thực là 3, phần ảo là −4.
D. Phần thực là −3, phần ảo là −4.
Trang 3/10 Mã đề 1



Câu 38. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
B.
.
C. a 6.
D. 2a 6.
A. a 3.
2
Câu 39. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là


a3 3
a3 3
a3
a3 3
A.
.
B.
.
C.
.
D.
.

4
8
4
12
Câu 40. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 3}.
B. {3; 4}.
C. {4; 3}.
Câu 41. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 4 mặt.

x2 + 3x + 5
Câu 42. Tính giới hạn lim
x→−∞
4x − 1
1
B. 1.
C. 0.
A. − .
4
1
Câu 43. [1] Giá trị của biểu thức log √3
bằng
10
1
A. −3.
B. 3.
C. .

3
Câu 44. Tính lim
x→1

A. −∞.

x3 − 1
x−1

B. 3.

C. +∞.

D. {5; 3}.
D. 3 mặt.

D.

1
.
4

1
D. − .
3

D. 0.

Câu 45. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17

A. −15.
B. −9.
C. −12.
D. −5.
2n + 1
Câu 46. Tìm giới hạn lim
n+1
A. 2.
B. 1.
C. 0.
D. 3.
Câu 47. Khối đa diện đều loại {3; 5} có số đỉnh
A. 20.
B. 30.

C. 8.

D. 12.

Câu 48. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −2.
B.
.
C. −4.
D. −7.
27
Câu 49. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác S AB đều và nằm trong mặt
Thể tích khối chóp


√ phẳng vng góc với 3(ABCD).
√ S .ABCD là
3
3

a 3
a 2
a 3
B.
.
C.
.
D.
.
A. a3 3.
2
2
4
Câu 50. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. Vô nghiệm.
C. 2.
D. 3.
Câu 51. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. Vô nghiệm.
C. 3.

D. 1.


Câu 52. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m ≥ 3.
C. m < 3.
D. m > 3.
Trang 4/10 Mã đề 1


Z
Câu 53. Cho
1
A. .
4

1

xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b

0

B.

1
.
2

C. 1.


D. 0.

Câu 54. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên khoảng (−2; 1).
B. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
C. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = e − 1.
C. xy0 = −ey + 1.
D. xy0 = ey + 1.

Câu 55. [3-12217d] Cho hàm số y = ln
A. xy0 = −ey − 1.

Câu 56. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 2020.
B. 2020.
C. 13.
D. log2 13.
Câu 57. Khối đa diện đều loại {4; 3} có số mặt
A. 10.
B. 12.

C. 6.


D. 8.

Câu 58.√Thể tích của tứ diện đều √
cạnh bằng a
3
3
a 2
a 2
A.
.
B.
.
6
4



a3 2
a3 2
C.
.
D.
.
12
2
ln x p 2
1
Câu 59. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x

3
1
8
8
1
A. .
B. .
C. .
D. .
9
3
3
9
Câu 60. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 2.
B. 1.
C. 3.

D. 0.

0 0 0 0
0
Câu 61.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 6
a 3
A.

.
B.
.
C.
.
D.
.
7
3
2
2
[ = 60◦ , S O
Câu 62. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S√BC) bằng


2a 57
a 57
a 57
A. a 57.
B.
.
C.
.
D.
.
17
19
19


Câu 63. Cho z là√nghiệm của phương trình x2 + x + 1 = 0. Tính P = z4 + 2z3 − z

−1 − i 3
−1 + i 3
A. P =
.
B. P = 2i.
C. P = 2.
D. P =
.
2
2
Câu 64. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n3 lần.
B. n2 lần.
C. 3n3 lần.
D. n lần.
2
x
Câu 65. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 1.
B. M = , m = 0.
C. M = e, m = .
D. M = e, m = 0.
e
e

Câu 66. [1] Giá trị của biểu thức 9log3 12 bằng
A. 4.
B. 2.
x2 − 5x + 6
Câu 67. Tính giới hạn lim
x→2
x−2
A. 0.
B. 5.

C. 144.

D. 24.

C. 1.

D. −1.
Trang 5/10 Mã đề 1


3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a
a
a 2
2a

.
B. .
C. .
D.
.
A.
3
4
3
3
Câu 69. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

A. aα bα = (ab)α .
B. aα+β = aα .aβ .
C. aαβ = (aα )β .
D. β = a β .
a

Câu 70. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 1 nghiệm.
B. 2 nghiệm.
C. Vô nghiệm.
D. 3 nghiệm.
Câu 68. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =

Câu 71. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 1.
B. 5.
C. 2.


D. 3.

Câu 72. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên sai. B. Chỉ có (I) đúng.
C. Chỉ có (II) đúng.
x−2
Câu 73. Tính lim
x→+∞ x + 3
2
A. −3.
B. − .
C. 1.
3


Câu 74. Tìm giá trị lớn nhất của√hàm số y = x + 3 + 6√− x
C. 3 2.
A. 3.
B. 2 3.

Câu 75. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 2 nghiệm.
B. 3 nghiệm.
C. Vô nghiệm.

D. Cả hai câu trên đúng.

D. 2.
D. 2 +


3.

D. 1 nghiệm.

Câu 76. Cho z1 , z2 là hai nghiệm của phương trình z + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 21.
B. P = −10.
C. P = 10.
D. P = −21.
!
x+1
Câu 77. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2017
4035
2016
.
B. 2017.

C.
.
D.
.
A.
2017
2018
2018
2

2

Câu 78. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 2 − log2 3.
B. 1 − log3 2.
C. 1 − log2 3.
D. 3 − log2 3.


Câu 79. Phần thực√và phần ảo của số √
phức z = 2 − 1 − 3i lần lượt √l

A. Phần thực là 2, √
phần ảo là 1 − √
3.
B. Phần thực là √2 − 1, phần ảo là −√ 3.
C. Phần thực là 1 − 2, phần ảo là − 3.
D. Phần thực là 2 − 1, phần ảo là 3.
Câu 80. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1

A. m < 3.
B. m ≥ 3.
C. m > 3.
D. m ≤ 3.
Câu 81. Khối đa diện đều loại {3; 4} có số đỉnh
A. 4.
B. 10.

C. 6.

D. 8.
Trang 6/10 Mã đề 1


Câu 82. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 5.
B. −6.
C. −5.
2

D. 6.

Câu 83. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.




5 13
B.

D. 2.
A. 26.
.
C. 2 13.
13
2
Câu 84. Tính
√4 mơ đun của số phức z√biết (1 + 2i)z = 3 + 4i. √
A. |z| = 5.
B. |z| = 5.
C. |z| = 2 5.
D. |z| = 5.
2

2

Câu 85.
số f (x) = 2sin x + 2cos x lần lượt là
√ [3-c] Giá trị nhỏ nhất và giá√trị lớn nhất của hàm √
A. 2 và 3.
B. 2 và 2 2.
C. 2 2 và 3.
D. 2 và 3.
cos n + sin n
Câu 86. Tính lim
n2 + 1
A. 0.
B. +∞.
C. −∞.
D. 1.


Câu 87. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 63.
C. 62.
D. Vô số.
Câu 88. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 3.

B. 1.

C. 2.
0

0

D. 4.

0

Câu 89. [3-1122h] Cho hình lăng trụ ABC.A B C có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3

. Khi đó thể tích khối lăng trụ là
BC là
4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
24
36
6
Câu 90. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. n3 lần.
C. 2n2 lần.
D. 2n3 lần.
!

3n + 2
2
Câu 91. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 2.
B. 4.
C. 3.
D. 5.
Câu 92. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) trên khoảng (a; b).
B. Cả ba câu trên đều sai.
C. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
D. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
!
5 − 12x
Câu 93. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. Vô nghiệm.
B. 1.
C. 3.
D. 2.
Trang 7/10 Mã đề 1


Câu 94. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1

1
1
1
A. m > .
B. m ≤ .
C. m < .
D. m ≥ .
4
4
4
4
2
Câu 95. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a bằng
1
1
A. − .
B. .
C. 2.
D. −2.
2
2
Câu 96. Khối đa diện đều loại {5; 3} có số đỉnh
A. 20.
B. 8.
C. 30.
D. 12.
Câu 97. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lăng trụ.
B. Hình lập phương.
C. Hình chóp.


D. Hình tam giác.

Câu 98. Khối chóp ngũ giác có số cạnh là
A. 11 cạnh.
B. 12 cạnh.

D. 9 cạnh.

C. 10 cạnh.

Câu 99. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −1.
B. m = −2.
C. m = −3.
D. m = 0.
2
2n − 1
Câu 100. Tính lim 6
3n + n4
2
B. 2.
C. 0.
D. 1.
A. .
3
2mx + 1
1
Câu 101. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng

m−x
3
A. −5.
B. 1.
C. −2.
D. 0.
3
2
x
Câu 102. [2]
2
√ Tìm m để giá trị nhỏ nhất của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng √
A. m = ± 3.
B. m = ±3.
C. m = ±1.
D. m = ± 2.

Câu 103. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một.
B. Có hai.
C. Có một hoặc hai.
D. Khơng có.
Câu 104.
√ trụ tam giác đều có cạnh bằng 1 là:

√ Thể tích của khối lăng
3
3
3

3
A.
.
B.
.
C. .
D.
.
4
2
4
12
Câu 105. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 27 m.
C. 25 m.
D. 1587 m.
Câu 106. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 3 đỉnh, 3 cạnh, 3 mặt. B. 4 đỉnh, 6 cạnh, 4 mặt. C. 4 đỉnh, 8 cạnh, 4 mặt. D. 6 đỉnh, 6 cạnh, 4 mặt.

Câu 107. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là √


a3 3
a3

a3 3
3
A.
.
B.
.
C. a 3.
D.
.
4
12
3
x+3
nghịch biến trên khoảng
Câu 108. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x−m
(0; +∞)?
A. 3.
B. 1.
C. 2.
D. Vô số.
log 2x
Câu 109. [3-1229d] Đạo hàm của hàm số y =

x2
1
1 − 4 ln 2x
1 − 2 log 2x
1 − 2 ln 2x
A. y0 = 3

.
B. y0 =
.
C. y0 =
.
D. y0 = 3
.
3
3
2x ln 10
2x ln 10
x
x ln 10
Trang 8/10 Mã đề 1


Câu 110. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
.
C. 2.
A. 1.
B.
2
Câu 111. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 + ln x.
B. y0 = ln x − 1.
C. y0 = x + ln x.

D. y0 = 1 − ln x.


Câu 112. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 − sin 2x.
B. 1 + 2 sin 2x.
C. −1 + 2 sin 2x.

D. −1 + sin x cos x.

D.

1
.
2

Câu 113. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 114. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới đây?
"
!
5
5
C. [3; 4).
D.
;3 .
A. (1; 2).
B. 2; .
2

2


ab.

Câu 115. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. −e.
B. − 2 .
C. − .
D. − .
e
2e
e
1 − xy
Câu 116. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ
x + 2y
nhất Pmin của P√= x + y.



18 11 − 29
9 11 + 19
9 11 − 19
2 11 − 3
A. Pmin =
. B. Pmin =

. C. Pmin =
. D. Pmin =
.
21
9
9
3
Câu 117. [3] Biết rằng giá trị lớn nhất của hàm số y =
các số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 135.

ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là
x
e

C. S = 24.

D. S = 22.
x−1 y z+1
= =

Câu 118. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.

A. 10x − 7y + 13z + 3 = 0.
B. 2x + y − z = 0.
C. −x + 6y + 4z + 5 = 0.
D. 2x − y + 2z − 1 = 0.
Câu 119. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −2 ≤ m ≤ 2.
B. −3 ≤ m ≤ 3.
C. m ≤ 3.
D. m ≥ 3.
Câu 120. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) = ln 10.
B. f 0 (0) =
.
C. f 0 (0) = 1.
ln 10
Câu 121. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (1; 2).
B. (−∞; +∞).
C. [−1; 2).

D. f 0 (0) = 10.
D. [1; 2].

Câu 122. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 6.
B. 3.
C. 4.
D. 8.

[ = 60◦ , S O
Câu 123. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a. Khoảng cách từ O đến (S
√ BC) bằng


2a 57
a 57
a 57
A.
.
B. a 57.
C.
.
D.
.
19
19
17
Trang 9/10 Mã đề 1


Câu 124. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 125. Cho hình
√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥

(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là



a3 6
a3 15
a3 5
3
.
B. a 6.
.
D.
.
C.
A.
3
3
3
Câu 126. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
√ với đáy và S C = a 3. 3Thể
√ tích khối chóp S .ABC
√là

3
3
a 6
2a 6
a 3

a3 3
A.
.
B.
.
C.
.
D.
.
12
9
2
4
Câu 127. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
A. y = log π4 x.
B. y = log 14 x.

C. y = loga x trong đó a = 3 − 2.
D. y = log √2 x.
Câu 128. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. Vô số.
B. 1.
C. 2.
D. 3.
Câu 129. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 10.
B. 12.
C. 27.


D. 3.

Câu 130. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 5.

D. 4.

C. 8.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B

2. A

3.

D

4.


5.

D

6.

C
D

8.

7. A
9.
11.

B

D

10. A

B

12. A
14.

C

13.
15.


B

16.

D

D

17.

C

18.

C

19.

C

20.

C

21.

C

22.


23.

D

24. A

25.

D

26.

27.

C

D
C

28. A

29.

B

30.

31.


B

32.

B

34.

B

36.

B

33. A
D

35.

C

37.

B

38.

39.

B


40.

D

43.

D

42. A
44.

B

45.

46. A

47.

48. A

49.

50. A

51.

52.


B

56.

D

57.

D

C

59.

C
D

61.
63.

C

64. A
66.

B

B

55.


62.

D

B

D

60.

C

53.

54.
58.

C

C

68. A
1

D
B
C

65.


D

67.

D

69.

D


70.

B
D

72.
C

74.
76.

C

73.

C

75. A

D

79.

B

81.

B

82.

C

77.

78. A
80.

71.

83.

C

C
B

84. A


85.

C

86. A

87.

C

88. A

89. A

90. A

91.

B

93.

B

C

92.
94.

B


96. A

95.

D

97.

D

98.

C

99.

100.

C

101.

102.

C

103.

104. A

106.

105.
B

108. A

B
D
C
B

107.

D

109.

D

110.

C

111. A

112.

C


113. A

114.

D

115.

116.

D

117. A

C

118. A

119.

B

120. A

121.

B

122.


B

123.

124.

B

125.

D

127.

D

129.

D

126. A
128.

C

130. A

2

C




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×