Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg 4 (321)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (151.16 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp đôi.
B. Tăng gấp 8 lần.
C. Tăng gấp 6 lần.
D. Tăng gấp 4 lần.
Câu 2. Mệnh đề nào sau đây sai?
A. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
Z
B. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
C. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
!0
Z
D.
f (x)dx = f (x).
1
1
1
Câu 3. [3-1131d] Tính lim +
+ ··· +
1 1+2


1 + 2 + ··· + n
3
5
A. +∞.
B. .
C. .
2
2

!

D. 2.

Câu 4. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 2 √
A. m = ±1.
B. m = ±3.
C. m = ± 3.
D. m = ± 2.
Câu 5. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 0.
B. Khơng tồn tại.
C. 9.

D. 13.

Câu 6. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [1; +∞).
B. (−∞; −3].
C. [−3; 1].

D. [−1; 3].
Câu 7. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB)
√ bằng



a 6
A.
.
B. 2a 6.
C. a 6.
D. a 3.
2
Câu 8. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 12.
B. 10.
C. 27.

D. 3.

Câu 9. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B thuộc
∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và AC = BD = a.
Khoảng cách từ A đến mặt phẳng (BCD) bằng




a 2
a 2

A. 2a 2.
B. a 2.
C.
.
D.
.
4
2
tan x + m
Câu 10. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (1; +∞).
B. [0; +∞).
C. (−∞; −1) ∪ (1; +∞). D. (−∞; 0] ∪ (1; +∞).
Câu 11. [1] Tính lim
2
A. − .
3

1 − 2n
bằng?
3n + 1
2
B. .
3


C.

1
.
3

D. 1.
Trang 1/10 Mã đề 1


Câu 12.

[3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23
√ i
h
3

q
x+ log23 x + 1+4m−1 =

0 có ít nhất một nghiệm thuộc đoạn 1; 3
A. m ∈ [−1; 0].
B. m ∈ [0; 2].
C. m ∈ [0; 4].
D. m ∈ [0; 1].
x
9
Câu 13. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3

1
B. −1.
C. 1.
D. 2.
A. .
2


Câu 14.
Tìm
giá
trị
lớn
nhất
của
hàm
số
y
=
x
+
3
+
6 −√x


A. 2 3.
B. 3.
C. 2 + 3.
D. 3 2.

Câu 15. Giá trị của lim(2x2 − 3x + 1) là
A. +∞.

x→1

B. 0.

C. 2.

Câu 16. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm cạnh.
B. Ba cạnh.
C. Bốn cạnh.

D. 1.
D. Hai cạnh.

Câu 17. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e4 .
B. −2e2 .
C. 2e2 .
D. −e2 .
1
2mx + 1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
Câu 18. Giá trị lớn nhất của hàm số y =
m−x
3
A. −5.
B. 0.

C. 1.
D. −2.
Câu 19. [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ
√ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 1.
B. 10.
C. 2.
D. 2.
2n + 1
Câu 20. Tìm giới hạn lim
n+1
A. 3.
B. 2.
C. 0.
D. 1.
p
ln x
1
Câu 21. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
8
1
8
B. .
C. .
D. .
A. .

9
9
3
3
Câu 22. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
A.
.
B. 7.
C. .
D. 5.
2
2
log2 240 log2 15
Câu 23. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. 3.
B. 4.
C. 1.
D. −8.

Câu 24. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 62.
C. 63.
D. Vô số.

Câu 25. Khối đa diện đều loại {3; 5} có số đỉnh
A. 8.
B. 20.

C. 30.

D. 12.
3a
Câu 26. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a
2a
a
a 2
A. .
B.
.
C. .
D.
.
3
3
4
3
Câu 27. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [1; 2].

B. (−∞; +∞).
C. (1; 2).
D. [−1; 2).
Trang 2/10 Mã đề 1


log 2x

Câu 28. [1229d] Đạo hàm của hàm số y =
x2
1 − 2 ln 2x
1 − 2 log 2x
1
A. y0 = 3
.
B. y0 =
.
C. y0 = 3
.
3
x ln 10
x
2x ln 10

D. y0 =

1 − 4 ln 2x
.
2x3 ln 10


Câu 29. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
B. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.

C. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
D. Cả ba đáp án trên.
 π
Câu 30. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


1 π3
2 π4
3 π6
A. e .
B. 1.
C.
e .
D.
e .
2
2
2
Câu 31. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
(1, 01)3
120.(1, 12)3

triệu.
B.
m
=
triệu.
A. m =
(1, 12)3 − 1
(1, 01)3 − 1
100.(1, 01)3
100.1, 03
C. m =
triệu.
D. m =
triệu.
3
3
Câu 32. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Ba mặt.
B. Hai mặt.
C. Bốn mặt.

D. Một mặt.

−2x2

Câu 33. [2-c] Giá trị lớn nhất của hàm số y = xe
1
1
A. 3 .
B. √ .

2e
2 e

trên đoạn [1; 2] là
2
1
C. 3 .
D. 2 .
e
e

4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
C. Vô nghiệm.
D. 2 nghiệm.

Câu 34. [2] Phương trình log4 (x + 1)2 + 2 = log √2
A. 3 nghiệm.
B. 1 nghiệm.
Z 2
ln(x + 1)
Câu 35. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. −3.
B. 3.
C. 0.
D. 1.
1
Câu 36. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm

3
A. 2 < m ≤ 3.
B. 2 ≤ m ≤ 3.
C. 0 ≤ m ≤ 1.
D. 0 < m ≤ 1.
Câu 37. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 38. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 1 nghiệm.
B. Vô nghiệm.
C. 2 nghiệm.

D. 3 nghiệm.

Câu 39. Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
A. Thập nhị diện đều. B. Tứ diện đều.
C. Bát diện đều.

D. Nhị thập diện đều.

x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
AB có độ dài bằng
√ đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng √


A. 2 2.
B. 2.
C. 6.
D. 2 3.
Câu 40. [3-1214d] Cho hàm số y =

Trang 3/10 Mã đề 1


x−1 y z+1
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 10x − 7y + 13z + 3 = 0.
B. 2x − y + 2z − 1 = 0.
C. −x + 6y + 4z + 5 = 0.
D. 2x + y − z = 0.

Câu 41. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình

1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y


2 11 − 3

18 11 − 29
C. Pmin =
.
D. Pmin =
.
3
21

Câu 42. [12210d] Xét các số thực dương x, y thỏa mãn log3
Pmin của P = x√+ y.
9 11 − 19
A. Pmin =
.
9

B. Pmin


9 11 + 19
=
.
9

Câu 43. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba mặt.
B. Bốn mặt.
C. Năm mặt.

D. Hai mặt.


Câu 44. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
Thể tích khối chóp S .ABC√là

√ với đáy và S C = a 3.3 √
a 3
a3 6
2a3 6
a3 3
.
B.
.
C.
.
D.
.
A.
2
4
12
9
a
1
Câu 45. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 4.
B. 1.
C. 2.

D. 7.
Câu 46. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.




5 13
A. 26.
B. 2 13.
C.
.
D. 2.
13
Câu 47. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
Thể tích khối chóp S .ABCD là
√ phẳng vng góc với 3(ABCD).

3
3

a 3
a 3
a 2
.
B.
.
C.
.

D. a3 3.
A.
2
4
2
Câu 48. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −5.
B. −12.
C. −15.
D. −9.
Câu 49. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 10.
B. 11.
C. 12.
D. 4.
Câu 50. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 6.
B. y(−2) = 2.
C. y(−2) = −18.
D. y(−2) = 22.
Câu 51. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
9t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho

9t + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 1.
B. Vô số.
C. 0.
D. 2.

Câu 52. [4] Xét hàm số f (t) =

Câu 53. Khối chóp ngũ giác có số cạnh là
A. 9 cạnh.
B. 12 cạnh.

C. 11 cạnh.

D. 10 cạnh.
Trang 4/10 Mã đề 1


Câu 54. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a

a3 15
a3
a3 15
a3 5
A.
.
B.
.

C.
.
D.
.
25
5
3
25
Câu 55. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên khoảng (−2; 1).
B. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
Câu 56. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −10.
B. P = −21.
C. P = 21.
D. P = 10.
Câu 57.√Thể tích của tứ diện đều √
cạnh bằng a
3
3
a 2
a 2
A.
.
B.
.
12
4



a3 2
C.
.
6


a3 2
D.
.
2

Câu 58. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √

a3 3
a3 3
a3
a3 3
.
B.
.
C.
.
D.
.
A.
12

4
8
4
d = 300 .
Câu 59. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
Độ dài cạnh bên
CC 0 = 3a. Thể tích V của khối lăng trụ đã cho. √


3a3 3
a3 3
.
B. V = 3a3 3.
.
D. V = 6a3 .
C. V =
A. V =
2
2
Câu 60. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 4 mặt. B. 3 đỉnh, 3 cạnh, 3 mặt. C. 4 đỉnh, 8 cạnh, 4 mặt. D. 4 đỉnh, 6 cạnh, 4 mặt.
Câu 61. Tính lim
A.

2
.
3

2n2 − 1
3n6 + n4

B. 1.

Câu 62. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.
Câu 63. Hàm số nào sau đây không có cực trị
1
A. y = x3 − 3x.
B. y = x + .
x

C. 2.

D. 0.

C. Khối bát diện đều.

D. Khối lập phương.

C. y = x4 − 2x + 1.

D. y =

x−2
.
2x + 1

x+2
Câu 64. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng

x + 5m
(−∞; −10)?
A. 3.
B. 2.
C. Vô số.
D. 1.
Câu 65. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
1
A. .
B. 5.
C. 25.
5



D.

5.


Câu 66. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a
3a 38
3a 58
a 38

A.
.
B.
.
C.
.
D.
.
29
29
29
29
Trang 5/10 Mã đề 1


Câu 67.
Z [1233d-2] Mệnh đề nào sau đây sai?

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
B.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
C.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.

Z
Z
Z
D.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.

A.

Câu 68. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 10 mặt.
B. 6 mặt.
C. 4 mặt.

D. 8 mặt.

Câu 69. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất khơng thay đổi?
A. 102.424.000.
B. 102.423.000.
C. 102.016.000.
D. 102.016.000.
Câu 70. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình chóp.
B. Hình lăng trụ.
C. Hình tam giác.
Câu 71. Tính lim
A. 1.


7n2 − 2n3 + 1
3n3 + 2n2 + 1
2
B. - .
3

C. 0.

D. Hình lập phương.

D.

7
.
3




x = 1 + 3t




Câu 72. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua





z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là











x
=
−1
+
2t
x
=
1
+
3t
x
=
1
+

7t
x = −1 + 2t
















A. 
C. 
.
D. 
y = −10 + 11t . B. 
y = 1 + 4t .
y=1+t
y = −10 + 11t .

















z = 6 − 5t
z = 1 − 5t
z = 1 + 5t
z = −6 − 5t
Câu 73. Trong các mệnh đề dưới đây, mệnh đề nào
! sai?
un
= +∞.
A. Nếu lim un = a > 0 và lim vn = 0 thì lim
vn
B. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
= 0.
C. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
vn
!
un

D. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
Câu 74. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (0; −2).
B. (−1; −7).
C. (2; 2).

D. (1; −3).

Câu 75.! Dãy số nào sau đây có giới
!n hạn là 0?
n
5
1
A.
.
B.
.
3
3

!n
4
D.
.
e

!n
5

C. − .
3

Câu 76. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 4.
B. −4.
C. 2.

D. −2.
Trang 6/10 Mã đề 1



Câu 77. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.


√ tích khối chóp S .ABC3 √
3
a 6
a3 6
a3 2
a 6
.
B.
.
C.
.
D.

.
A.
6
36
18
6
Câu 78. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −5.
B. −6.
C. 5.
2

D. 6.

0 0 0 0
0
Câu 79.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 3
a 6
a 6
a 6
A.
.
B.
.
C.
.
D.

.
2
7
2
3

Câu 80.
bằng 1 là:
√ Thể tích của khối lăng trụ tam giác đều có cạnh √

3
3
3
3
A.
.
B. .
C.
.
D.
.
12
4
2
4
log(mx)
Câu 81. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m = 4.

B. m < 0 ∨ m > 4.
C. m ≤ 0.
D. m < 0.
1
Câu 82. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = −3, m = 4.
B. m = 4.
C. −3 ≤ m ≤ 4.
D. m = −3.
Câu 83. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a
a 3
A. .
B. a.
C. .
D.
.
2
3
2
! x3 −3mx2 +m
1
nghịch biến trên
Câu 84. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =

π
khoảng (−∞; +∞)
A. m ∈ R.
B. m , 0.
C. m = 0.
D. m ∈ (0; +∞).
Câu 85. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 2.
B. 3.
C. 1.
D. 7.
Câu 86. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e−2 + 1; m = 1.
−2
C. M = e + 2; m = 1.
D. M = e2 − 2; m = e−2 + 2.
Câu 87. Tính lim
x→1

A. −∞.

x3 − 1
x−1

B. +∞.

C. 3.

D. 0.


Câu 88. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d song song với (P).
B. d nằm trên P hoặc d ⊥ P.
C. d ⊥ P.
D. d nằm trên P.
Câu 89. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng



a 3
a 3
2a 3
A.
.
B.
.
C. a 3.
D.
.
3
2
2
Câu 90. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 + 2e
1 − 2e
A. m =
.

B. m =
.
C. m =
.
4e + 2
4 − 2e
4e + 2

D. m =

1 − 2e
.
4 − 2e
Trang 7/10 Mã đề 1


Câu 91. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là


a3 15
a3 6
a3 5
A.
.
B.
.
C.
.

D. a3 6.
3
3
3
Câu 92. Khối đa diện đều loại {3; 5} có số cạnh
A. 8.
B. 20.

C. 30.

D. 12.

Câu 93. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18. √
A. 9.
B. 27.
C. 8.
D. 3 3.
√3
4
Câu 94. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
7
5
5
2
A. a 3 .
B. a 3 .
C. a 8 .
D. a 3 .
Câu 95. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng

vi khuẩn đạt 100.000 con?
A. 15, 36.
B. 20.
C. 24.
D. 3, 55.
!x
1
Câu 96. [2] Tổng các nghiệm của phương trình 31−x = 2 +

9
A. log2 3.
B. 1 − log2 3.
C. − log3 2.
D. − log2 3.
Câu 97. Tính lim
A. 1.

cos n + sin n
n2 + 1
B. −∞.

Câu 98. Tứ diện đều thuộc loại
A. {4; 3}.
B. {5; 3}.

C. +∞.

D. 0.

C. {3; 3}.


D. {3; 4}.

Câu 99. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {3}.
B. {2}.
C. {5; 2}.
D. {5}.
Câu 100. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (0; 2).
B. (−∞; 1).
C. R.

D. (2; +∞).

Câu 101. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
B. m > − .
C. m ≤ 0.
D. m ≥ 0.
A. − < m < 0.
4
4
Câu 102. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.

Z 3
x
a
a
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
Câu 103. Cho I =

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 16.
B. P = 4.
C. P = −2.
D. P = 28.
3
2
x
Câu 104. [2]
√ Tìm m để giá trị lớn nhất của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng 8√
A. m = ± 3.
B. m = ±3.
C. m = ±1.
D. m = ± 2.

x2 − 5x + 6
x→2
x−2
B. 1.


Câu 105. Tính giới hạn lim
A. −1.

C. 0.

D. 5.
Trang 8/10 Mã đề 1


Câu 106. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
23
1637
1728
1079
A.
.
B.
.
C.
.
D.
.
68
4913
4913
4913
Câu 107. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. Vô nghiệm.

C. 3.
D. 2.
log7 16
bằng
Câu 108. [1-c] Giá trị của biểu thức
15
log7 15 − log7 30
A. −4.
B. 4.
C. −2.
D. 2.
Câu 109. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. 1.
C. 2.

D. Vô nghiệm.

Câu 110. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 3.

B. 4.

C. 2.

D. 1.


Câu 111. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 18 lần.
B. Tăng gấp 9 lần.
C. Tăng gấp 3 lần.
D. Tăng gấp 27 lần.
Câu 112. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Tăng lên (n − 1) lần. B. Giảm đi n lần.
C. Tăng lên n lần.
D. Không thay đổi.
x2 − 12x + 35
x→5
25 − 5x
2
A. +∞.
B. .
5
Câu 114. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối lập phương.
Câu 113. Tính lim

2
D. − .
5

C. −∞.
C. Khối bát diện đều.


D. Khối tứ diện đều.

2

Câu 115. Tổng diện tích các mặt của một khối lập phương bằng 96cm . Thể tích của khối lập phương đó
là:
A. 91cm3 .
B. 64cm3 .
C. 84cm3 .
D. 48cm3 .
Câu 116. [1] Tập
! xác định của hàm số! y = log3 (2x + 1) là
!
1
1
1
A. −∞; − .
B.
; +∞ .
C. − ; +∞ .
2
2
2

!
1
D. −∞; .
2


Câu 117. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa
√ hai đường thẳng BD và√S C bằng


a 6
a 6
a 6
A.
.
B.
.
C. a 6.
D.
.
2
3
6
Câu 118. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trang 9/10 Mã đề 1


Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Cả hai đều đúng.


C. Chỉ có (I) đúng.



D. Cả hai đều sai.

Câu 119. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
3
9
3
A. 0 < m ≤ .
B. 0 ≤ m ≤ .
C. m ≥ 0.
D. 0 ≤ m ≤ .
4
4
4
Câu 120. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 5 mặt.
B. 3 mặt.
C. 6 mặt.
D. 4 mặt.
2

2

Câu 121. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 120 cm2 .
C. 160 cm2 .
D. 1200 cm2 .

Câu 122. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


3
3
a 3
a 2
a3 3
a3 6
A.
.
B.
.
C.
.
D.
.
48
16
24
48
Câu 123. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
B. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
C. Z
F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
u0 (x)

dx = log |u(x)| + C.
D.
u(x)
Câu 124. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 6 mặt.
C. 9 mặt.

D. 3 mặt.

Câu 125. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 4}.
B. {4; 3}.
C. {5; 3}.

D. {3; 5}.

Câu 126. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a + b + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
B. 9.
C. .
D. 6.
A. .
2
2
Câu 127. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1

A. 2.
B. − .
C. .
D. −2.
2
2
Câu 128. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD

√ là
3
3
3
3
8a 3
4a 3
8a 3
a 3
A.
.
B.
.
C.
.
D.
.
9
9
3

9
Câu 129. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 6.
B. 4.
C. 3.
D. 8.
log(mx)
Câu 130. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0.
B. m < 0 ∨ m > 4.
C. m ≤ 0.
D. m < 0 ∨ m = 4.
2

2

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B


2. A

3.

D

4. A

5. A

C

6.

7.

8.

C

9.

D

D

10. A

11. A


12. A
D

14.

C

13.

16.

B

18.

B

19. A

20.

B

21. A

22.

15.


B

17.

D

C

23.

D

24.

B

25.

D

26.

B

27.

B

29.
31.


28. A
C

B
D

33.

C

32.

C
D

34.

35. A
37.

30.

36. A
B

38.

C


39. A

40.

41. A

42.

C

43. A

44.

C

46.

C

45.

D

D

47.

C


48.

49.

C

50.

51.

C

52.

D

54.

D

53.
55.

D

56.

C

57. A

59.

B
C

B

58.

C

60.

C

61.

D

62. A

63.

D

64.

65.

C


66.

67.

C

68.
1

D
B
C
B


69. A
71.

70.
B

72. A

73. A
75.

74. A
76.


B

77.

80.

D

81. A
B
C

88.

89. A
B

93.

D

95. A
97.

D

99.

D


C

92.

C

94.

D

96.

D

100. A
102. A

103.

B

104.

105. A

106.
D

D
B


108. A

B

111.

C

98.

B

107.

B

90.

101.

110. A
D

112.

B
B

113.


B

114.

115.

B

116.

117.

D

118. A

119.

D

120.

121. A
123.

C

84.
86. A


87.

109.

D

82. A

85. A

91.

D

78. A

C

79.
83.

C

C
D

122. A
125.


D

126. A

127.

D

128. A

129.

130.

D

D

2

C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×