TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. Giá trị của lim(2x2 − 3x + 1) là
A. +∞.
x→1
B. 2.
C. 0.
D. 1.
Câu 2. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 2.
B. 1.
C. 3.
D. 0.
Câu 3. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Khơng thay đổi.
B. Tăng lên (n − 1) lần. C. Tăng lên n lần.
D. Giảm đi n lần.
Câu 4. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Ba mặt.
B. Bốn mặt.
C. Một mặt.
D. Hai mặt.
x+3
Câu 5. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 3.
B. Vô số.
C. 2.
D. 1.
2n + 1
Câu 6. Tìm giới hạn lim
n+1
A. 0.
B. 1.
C. 3.
D. 2.
! x3 −3mx2 +m
1
nghịch biến trên khoảng
Câu 7. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
π
(−∞; +∞)
A. m ∈ (0; +∞).
B. m ∈ R.
C. m = 0.
D. m , 0.
Câu 8. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = (0; +∞).
B. D = R \ {1}.
C. D = R.
D. D = R \ {0}.
Câu 9. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi
suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước đó.
Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết
rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền ra.
A. 210 triệu.
B. 212 triệu.
C. 216 triệu.
D. 220 triệu.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 10. [3-12217d] Cho hàm số y = ln
x+1
0
y
0
y
A. xy = −e − 1.
B. xy = e + 1.
C. xy0 = −ey + 1.
D. xy0 = ey − 1.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = −e − 1.
C. xy0 = −ey + 1.
D. xy0 = ey + 1.
Câu 11. [3-12217d] Cho hàm số y = ln
A. xy0 = ey − 1.
Câu 12. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
n2 + n + 1
A. un =
.
B.
u
=
.
n
n2
(n + 1)2
Câu 13. Khối đa diện đều loại {3; 3} có số cạnh
A. 5.
B. 8.
C. un =
C. 6.
1 − 2n
.
5n + n2
D. un =
n2 − 2
.
5n − 3n2
D. 4.
x2
Câu 14. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = .
B. M = e, m = 0.
C. M = , m = 0.
D. M = e, m = 1.
e
e
Trang 1/10 Mã đề 1
Câu 15. Cho I =
Z
3
x
√
dx =
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 16.
B. P = 28.
a
a
+ b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
d
d
C. P = −2.
D. P = 4.
Câu 16. Cho
Z hai hàm yZ= f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
B. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
C. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Câu 17. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. 2.
C. Vô nghiệm.
D. 3.
π π
3
Câu 18. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 3.
B. −1.
C. 1.
D. 7.
√
√
Câu 19. Tìm
√ giá trị lớn nhất của√hàm số y = x + 3 + 6 − x
√
B. 3 2.
C. 3.
D. 2 3.
A. 2 + 3.
Câu 20. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 7 năm.
B. 9 năm.
C. 8 năm.
D. 10 năm.
x
9
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
Câu 21. [2-c] Cho hàm số f (x) = x
9 +3
1
A. 1.
B. −1.
C. .
D. 2.
2
Câu 22. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim− f (x) = f (b).
B. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim− f (x) = f (a) và lim+ f (x) = f (b).
D. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→b
Câu 23. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 12.
x→a
C. 10.
x→b
D. 6.
Câu 24. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 2.
B. 0, 3.
C. 0, 4.
D. 0, 5.
Câu 25. Hàm số f có nguyên hàm trên K nếu
A. f (x) xác định trên K.
C. f (x) liên tục trên K.
B. f (x) có giá trị nhỏ nhất trên K.
D. f (x) có giá trị lớn nhất trên K.
√
Câu 26. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị ngun dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. Vô số.
C. 62.
D. 63.
x−1
Câu 27. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác đều ABI có hai đỉnh A,√B thuộc (C), đoạn thẳng AB
√
√ có độ dài bằng
A. 2.
B. 6.
C. 2 3.
D. 2 2.
Trang 2/10 Mã đề 1
Câu 28. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a
√
a3 5
a3 15
a3 15
a3
A.
.
B.
.
C.
.
D.
.
25
5
25
3
Câu 29. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; 8).
B. A(4; −8).
C. A(−4; −8)(.
D. A(4; 8).
Câu 30. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 31. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
C. Số đỉnh của khối chóp bằng số mặt của khối chóp.
D. Số cạnh của khối chóp bằng số mặt của khối chóp.
Câu 32. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
1
C. − .
A. 2.
B. .
2
2
D. −2.
Câu 33. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
6
15
18
9
Câu 34. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. [6, 5; +∞).
C. (4; 6, 5].
D. (−∞; 6, 5).
Câu 35. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 9 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 27 lần.
D. Tăng gấp 3 lần.
!
x+1
Câu 36. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
4035
2016
2017
.
B.
.
C.
.
D. 2017.
A.
2018
2017
2018
1
Câu 37. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (1; +∞).
B. D = R.
C. D = (−∞; 1).
D. D = R \ {1}.
Câu 38. Tứ diện đều thuộc loại
A. {3; 4}.
B. {3; 3}.
C. {5; 3}.
D. {4; 3}.
Câu 39. [1] Đạo hàm của làm số y = log x là
1
ln 10
A.
.
B. y0 =
.
10 ln x
x
1
C. y0 = .
x
D. y0 =
C. y = x3 − 3x.
D. y =
Câu 40. Hàm số nào sau đây khơng có cực trị
1
A. y = x4 − 2x + 1.
B. y = x + .
x
1
.
x ln 10
x−2
.
2x + 1
Câu 41. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 72cm3 .
B. 46cm3 .
C. 27cm3 .
D. 64cm3 .
Trang 3/10 Mã đề 1
!
3n + 2
2
Câu 42. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 4.
B. 5.
C. 2.
D. 3.
Câu 43. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 15 tháng.
B. 16 tháng.
C. 18 tháng.
D. 17 tháng.
!
!
!
1
2
2016
4x
. Tính tổng T = f
+f
+ ··· + f
Câu 44. [3] Cho hàm số f (x) = x
4 +2
2017
2017
2017
2016
A. T = 2016.
B. T = 1008.
C. T =
.
D. T = 2017.
2017
3
2
Câu 45. Giá√trị cực đại của hàm số y =
√ x − 3x − 3x + 2
√
√
A. −3 + 4 2.
B. −3 − 4 2.
C. 3 + 4 2.
D. 3 − 4 2.
Câu 46.
√ [4-1246d] Trong tất cả√các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất của |z|
A. 3.
B. 5.
C. 1.
D. 2.
x+2
Câu 47. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. Vô số.
B. 1.
C. 2.
D. 3.
Câu 48. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số nghịch biến trên khoảng (−2; 1).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
Câu 49. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 3.
B. 2.
C. 0.
D. 1.
Câu 50. [2] Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8 √
C. m = ±3.
D. m = ± 3.
A. m = ±1.
B. m = ± 2.
x2 − 9
Câu 51. Tính lim
x→3 x − 3
A. −3.
B. 3.
C. +∞.
D. 6.
Câu 52. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 0.
B. −6.
C. 3.
D. −3.
Câu 53. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. 9.
B. .
C. 6.
D. .
2
2
Câu 54. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 13.
B. Không tồn tại.
C. 0.
D. 9.
Câu 55. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 3.
C. 2.
D. Vô nghiệm.
Câu 56. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
A. .
B. 1.
C. 2.
2
D.
ln 2
.
2
Trang 4/10 Mã đề 1
Câu 57. Tính lim
A. 1.
2n − 3
bằng
+ 3n + 1
B. −∞.
2n2
C. 0.
D. +∞.
!
5 − 12x
= 2 có bao nhiêu nghiệm thực?
12x − 8
B. Vô nghiệm.
C. 1.
D. 2.
Câu 58. [2] Phương trình log x 4 log2
A. 3.
Câu 59. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là
√
√
a3 3
a3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
8
4
4
Câu 60. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. .
B. 3.
C. 2e + 1.
e
D. 2e.
Câu 61. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −15.
B. −5.
C. −9.
D. −12.
2
Câu 62. Tính
√4 mô đun của số phức z biết
√ (1 + 2i)z = 3 + 4i. √
A. |z| = 5.
B. |z| = 2 5.
C. |z| = 5.
D. |z| = 5.
Câu 63. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45√◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là
10a3 3
.
B. 10a3 .
C. 20a3 .
D. 40a3 .
A.
3
Câu 64. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 10 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 65. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. .
B. 1.
C. 3.
D. .
2
2
Câu 66. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng
√
a 3
a
a
B.
.
C. .
D. a.
A. .
3
2
2
Câu 67. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Đường phân giác góc phần tư thứ nhất.
B. Trục thực.
C. Trục ảo.
D. Hai đường phân giác y = x và y = −x của các góc tọa độ.
2
Câu 68. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 6.
B. 8.
C. 5.
Câu 69. Khối đa diện đều loại {3; 5} có số mặt
A. 30.
B. 8.
C. 12.
√
2
Câu 70. √Xác định phần ảo của số
√ phức z = ( 2 + 3i)
A. −6 2.
B. 6 2.
C. −7.
D. 7.
D. 20.
D. 7.
Trang 5/10 Mã đề 1
1
1
1
Câu 71. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
C. .
A. +∞.
B. .
2
2
!
Câu 72.√Thể tích của tứ diện đều √
cạnh bằng a
√
3
3
a 2
a 2
a3 2
A.
.
B.
.
C.
.
12
4
2
Câu 73. [1] Tập
! xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
A. − ; +∞ .
B.
; +∞ .
C. −∞; .
2
2
2
Câu 74. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 3 nghiệm.
B. 2 nghiệm.
C. 1 nghiệm.
Câu 75. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 6 mặt.
C. 9 mặt.
√
Câu 76. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
A. 3.
B. −3.
C. − .
3
D. 2.
√
a3 2
D.
.
6
!
1
D. −∞; − .
2
D. Vô nghiệm.
D. 4 mặt.
D.
1
.
3
Câu 77. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
√
√
√
√
20 3
14 3
B. 8 3.
C.
.
D.
.
A. 6 3.
3
3
Câu 78. Khối đa diện đều loại {3; 3} có số mặt
A. 3.
B. 2.
C. 4.
D. 5.
x+1
Câu 79. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
B. 1.
C. .
D. .
A. .
6
3
2
1 − 2n
Câu 80. [1] Tính lim
bằng?
3n + 1
1
2
2
A. .
B. − .
C. 1.
D. .
3
3
3
Câu 81. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 9 mặt.
C. 4 mặt.
D. 3 mặt.
[ = 60◦ , S O
Câu 82. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S√BC) bằng
√
√
a 57
2a 57
a 57
B.
A. a 57.
.
C.
.
D.
.
17
19
19
Câu 83. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
23
9
13
5
A. −
.
B.
.
C.
.
D. − .
100
25
100
16
Câu 84. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.
C. Khối lập phương.
D. Khối bát diện đều.
Câu 85. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −2 ≤ m ≤ 2.
B. m ≤ 3.
C. m ≥ 3.
D. −3 ≤ m ≤ 3.
Trang 6/10 Mã đề 1
π
Câu 86. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3
√
trị của biểu thức T = a + b 3.
√
√
C. T = 4.
D. T = 3 3 + 1.
A. T = 2.
B. T = 2 3.
Câu 87.
√ Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.
A. 3 3.
B. 8.
C. 9.
D. 27.
Câu 88. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 22016 .
B. 0.
C. e2016 .
D. 1.
[ = 60◦ , S A ⊥ (ABCD).
Câu 89. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√
√ S C là a. Thể tích khối chóp S .ABCD là
3
3
√
a 2
a 3
a3 2
3
A.
.
B.
.
C. a 3.
D.
.
4
6
12
Câu 90. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
1
ab
ab
.
D. √
A. √
.
B. √
.
C. 2
.
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
Câu 91. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 48cm3 .
C. 91cm3 .
D. 84cm3 .
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
Câu 92. [3-1132d] Cho dãy số (un ) với un =
n2 + 1
A. lim un = 0.
B. Dãy số un khơng có giới hạn khi n → +∞.
1
C. lim un = .
D. lim un = 1.
2
Câu 93. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−1; 3].
B. (−∞; −3].
C. [−3; 1].
D. [1; +∞).
Câu 94. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
100.(1, 01)3
(1, 01)3
A. m =
triệu.
triệu.
B.
m
=
(1, 01)3 − 1
3
120.(1, 12)3
100.1, 03
C. m =
triệu.
D. m =
triệu.
3
(1, 12) − 1
3
Câu 95. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 5 mặt. C. 6 đỉnh, 9 cạnh, 6 mặt. D. 5 đỉnh, 9 cạnh, 6 mặt.
Câu 96. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1079
23
1728
1637
A.
.
B.
.
C.
.
D.
.
4913
68
4913
4913
Câu 97. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt phẳng vng góc với (ABCD).
Thể tích khối chóp
√
√ S .ABCD là
3
3
3
√
a 3
a 2
a 3
A.
.
B. a3 3.
C.
.
D.
.
4
2
2
Trang 7/10 Mã đề 1
Câu 98. Trong các khẳng định sau, khẳng định nào sai?
A. Z
F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
u0 (x)
B.
dx = log |u(x)| + C.
u(x)
C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
D. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
√
√
Câu 99. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
3
9
3
A. 0 < m ≤ .
B. 0 ≤ m ≤ .
C. 0 ≤ m ≤ .
D. m ≥ 0.
4
4
4
Câu 100. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lăng trụ tam giác.
B. Khối tứ diện.
C. Khối lập phương.
D. Khối bát diện đều.
√
Câu 101. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 62.
C. Vơ số.
D. 63.
2
2
Câu 102. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − 2 .
D. − .
B. −e.
C. − .
e
e
2e
Câu 103. Cho hình chóp S .ABCD có√đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp S .ABCD là
√
4a3
4a3 3
2a3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 104.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
√ min |z − 1 − i|.
A. 2.
B. 1.
C. 2.
D. 10.
Câu 105. [1] Đạo hàm của hàm số y = 2 x là
1
A. y0 = 2 x . ln x.
B. y0 = x
.
2 . ln x
Câu 106. Khối đa diện đều loại {4; 3} có số mặt
A. 6.
B. 8.
C. y0 =
1
.
ln 2
C. 12.
D. y0 = 2 x . ln 2.
D. 10.
Câu 107. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√
√ chóp S .ABCD là
√
3
3
a 3
a3 2
a3 3
a 6
A.
.
B.
.
C.
.
D.
.
48
24
16
48
d = 120◦ .
Câu 108. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 2a.
B.
.
C. 4a.
D. 3a.
2
Câu 109. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (2; +∞).
C. R.
D. (0; 2).
8
Câu 110. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 81.
B. 82.
C. 64.
D. 96.
1
Câu 111. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 0 < m ≤ 1.
C. 2 ≤ m ≤ 3.
D. 0 ≤ m ≤ 1.
Trang 8/10 Mã đề 1
2
Câu 112. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 2.
B. 3.
C. 5.
D. 4.
Câu 113. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vơ nghiệm.
B. 2.
C. 3.
D. 1.
Câu 114. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 4.
B. 3.
2n + 1
Câu 115. Tính giới hạn lim
3n + 2
1
B. 0.
A. .
2
C. 1.
C.
1
3|x−1|
= 3m − 2 có nghiệm duy
D. 2.
3
.
2
D.
2
.
3
Câu 116. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 0.
B. 7.
C. 9.
D. 5.
Câu 117. Khối đa diện đều loại {3; 4} có số mặt
A. 8.
B. 12.
C. 6.
D. 10.
Câu 118.
hạn là 0?
!n Dãy số nào sau đây có !giới
n
5
1
.
B.
.
A.
3
3
!n
4
C.
.
e
!n
5
D. − .
3
Câu 119. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 20, 128 triệu đồng. B. 3, 5 triệu đồng.
C. 50, 7 triệu đồng.
D. 70, 128 triệu đồng.
q
2
Câu 120. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x + log23 x + 1 + 4m −
√ i
h
1 = 0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 4].
C. m ∈ [0; 1].
D. m ∈ [0; 2].
Câu 121. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = 10.
Câu 122. Tính lim
A. 0.
B. f 0 (0) = 1.
cos n + sin n
n2 + 1
B. −∞.
C. f 0 (0) =
1
.
ln 10
C. 1.
D. f 0 (0) = ln 10.
D. +∞.
Câu 123. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 1).
B. A0 (−3; −3; −3).
C. A0 (−3; 3; 3).
D. A0 (−3; −3; 3).
Câu 124. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm mặt.
B. Hai mặt.
C. Bốn mặt.
Câu 125. Hàm số y =
A. x = 3.
x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 0.
C. x = 1.
D. Ba mặt.
D. x = 2.
Câu 126. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m < 3.
C. m ≤ 3.
D. m > 3.
Trang 9/10 Mã đề 1
Câu 127. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó
Q0 là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số
lượng vi khuẩn đạt 100.000 con?
A. 3, 55.
B. 20.
C. 24.
D. 15, 36.
Câu 128. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m ≥ 0.
B. m > 0.
C. m > 1.
D. m > −1.
Câu 129. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
Câu 130. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối tứ diện đều.
C. Khối bát diện đều.
D. Khối 12 mặt đều.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
D
3.
4.
C
7.
D
C
8.
10.
B
11. A
D
12.
C
13.
15.
D
B
16.
B
B
18.
19.
B
20.
21. A
C
14.
17.
23.
B
6.
5. A
9.
D
2.
C
C
B
22. A
B
24.
B
25.
C
26.
C
27.
C
28.
C
29.
D
30. A
31.
C
32.
34.
C
35.
36.
C
37. A
38.
C
39.
B
40.
D
D
41.
42. A
44.
D
43.
C
B
45. A
B
46.
D
47.
C
C
48.
B
49.
50.
B
51.
D
53.
D
52.
D
54.
C
55. A
56.
C
57.
58.
C
59.
60.
C
B
61.
B
D
62. A
63.
64. A
65.
D
C
66.
D
67.
D
68.
D
69.
D
1
70.
71.
B
72. A
74.
D
73. A
D
76.
B
77. A
78.
79. A
80.
81.
C
B
82.
D
83. A
D
84. A
85.
D
86.
C
87. A
88.
B
89. A
90.
B
91. A
92.
C
93.
95.
D
C
98.
B
100.
B
104.
105.
D
106. A
107.
D
108.
109.
D
110. A
B
B
112.
111. A
B
115.
D
C
116.
C
118. A
119. A
120. A
121.
D
122. A
123.
C
124.
125.
C
126. A
127.
D
114.
117. A
129.
D
102.
B
103. A
113.
D
96.
97.
101.
94. A
B
99.
C
D
C
2
D
128.
D
130.
D