TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể tích của khối chóp S .ABC√ theo a
√
√
a3 15
a3 5
a3 15
a3
.
B.
.
C.
.
D.
.
A.
3
25
25
5
√
Câu 2. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. − .
B. −3.
C. .
D. 3.
3
3
Câu 3. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.
C. Khối 12 mặt đều.
D. Khối 20 mặt đều.
Câu 4. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
B. .
C. 4.
D. .
A. .
2
8
4
Câu 5. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ nhất
của |z + 2 + i|
√
√
√
√
12 17
.
C. 34.
B.
D. 68.
A. 5.
17
Câu 6. Phát biểu nào sau đây là sai?
1
A. lim un = c (un = c là hằng số).
B. lim k = 0.
n
1
C. lim = 0.
D. lim qn = 0 (|q| > 1).
n
1
Câu 7. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (1; +∞).
B. D = R \ {1}.
C. D = (−∞; 1).
D. D = R.
x
x+1
x−2 x−1
+
+
+
và y = |x + 1| − x − m (m là tham
Câu 8. [4-1212d] Cho hai hàm số y =
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3].
B. (−∞; −3).
C. (−3; +∞).
D. [−3; +∞).
√
Câu 9. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 64.
C. 63.
D. Vô số.
Câu 10. Khối đa diện đều loại {3; 3} có số mặt
A. 2.
B. 5.
C. 4.
D. 3.
Câu 11. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. f (x) có giới hạn hữu hạn khi x → a.
B. lim f (x) = f (a).
C. lim+ f (x) = lim− f (x) = a.
x→a
x→a
x→a
D. lim+ f (x) = lim− f (x) = +∞.
x→a
x→a
a
1
+
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
C. 2.
D. 7.
Câu 12. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) =
A. 1.
B. 4.
Câu 13. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10.
B. 6.
C. 4.
D. 8.
Trang 1/10 Mã đề 1
2n + 1
Câu 14. Tìm giới hạn lim
n+1
A. 1.
B. 2.
x3 − 1
Câu 15. Tính lim
x→1 x − 1
A. 0.
B. 3.
√
C. 0.
D. 3.
C. +∞.
D. −∞.
2
Câu 16. Xác định phần ảo của số
√ phức z = ( 2 + 3i)
√
A. −7.
B. 6 2.
C. −6 2.
D. 7.
Câu 17. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e2 − 2; m = e−2 + 2.
B. M = e−2 − 2; m = 1.
C. M = e−2 + 2; m = 1.
D. M = e−2 + 1; m = 1.
Câu 18. Mệnh đề nào sau đây sai?
Z
A. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
B. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
!0
Z
D.
f (x)dx = f (x).
Z
Câu 19. Cho
A.
1
.
4
1
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0
B. 0.
C. 1.
D.
1
.
2
Câu 20. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị
" nhỏ! nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới đây?
5
5
;3 .
A. 2; .
B.
C. [3; 4).
D. (1; 2).
2
2
Câu 21. Dãy số nào sau đây có giới hạn là 0?
n2 − 2
1 − 2n
A. un =
.
B.
u
=
.
n
5n − 3n2
5n + n2
C. un =
n2 − 3n
.
n2
D. un =
√
ab.
n2 + n + 1
.
(n + 1)2
Câu 22. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số mặt của khối chóp.
B. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
C. Số cạnh của khối chóp bằng số mặt của khối chóp.
D. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
Câu 23. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > −1.
B. m ≥ 0.
C. m > 0.
x+1
Câu 24. Tính lim
bằng
x→−∞ 6x − 2
1
1
A. 1.
B. .
C. .
6
3
!
1
1
1
Câu 25. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
A. .
B. 2.
C. +∞.
2
D. m > 1.
D.
1
.
2
D.
3
.
2
Câu 26. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 2.
B. 1.
C. 7.
D. 3.
Trang 2/10 Mã đề 1
Câu 27. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 6.
B. y(−2) = 22.
C. y(−2) = 2.
D. y(−2) = −18.
!x
1
là
Câu 28. [2] Tổng các nghiệm của phương trình 31−x = 2 +
9
A. − log2 3.
B. − log3 2.
C. 1 − log2 3.
D. log2 3.
Câu 29. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. 6.
B. .
C. .
D. 9.
2
2
x+2
Câu 30. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 1.
B. Vô số.
C. 2.
D. 3.
1
Câu 31. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 2 ≤ m ≤ 3.
C. 0 ≤ m ≤ 1.
D. 0 < m ≤ 1.
Câu 32. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 3.
B. V = 4.
C. V = 5.
D. V = 6.
Câu 33. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
C. Hàm số nghịch biến trên khoảng (−2; 1).
D. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 34. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 22 triệu đồng.
B. 3, 03 triệu đồng.
C. 2, 20 triệu đồng.
D. 2, 25 triệu đồng.
2
Câu 35. [2] Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2
A. m = ±3.
B. m = ± 3.
C. m = ± 2.
D. m = ±1.
Câu 36. Khối đa diện đều loại {3; 4} có số mặt
A. 12.
B. 6.
C. 8.
D. 10.
Câu 37. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 20 .(3)20
C 20 .(3)30
C 10 .(3)40
C 40 .(3)10
A. 50 50 .
B. 50 50 .
C. 50 50 .
D. 50 50 .
4
4
4
4
x−1
Câu 38. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
√
√ đều ABI có hai đỉnh A,√B thuộc (C), đoạn thẳng AB có độ dài bằng
A. 2 3.
B. 6.
C. 2.
D. 2 2.
Trang 3/10 Mã đề 1
Câu 39. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x) − g(x)] = a − b.
B. lim [ f (x) + g(x)] = a + b.
x→+∞
x→+∞
f (x) a
= .
C. lim [ f (x)g(x)] = ab.
D. lim
x→+∞
x→+∞ g(x)
b
Câu 40.
√ Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.
A. 3 3.
B. 27.
C. 8.
D. 9.
Câu 41. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là −4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là 3, phần ảo là −4.
D. Phần thực là −3, phần ảo là 4.
Câu 42. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
√
A. y = log π4 x.
B. y = loga x trong đó a = 3 − 2.
C. y = log √2 x.
D. y = log 14 x.
Câu 43.! Dãy số nào sau đây có giới! hạn là 0?
n
n
1
5
A.
.
B. − .
3
3
!n
5
C.
.
3
!n
4
D.
.
e
Câu 44. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
2a
8a
a
5a
.
B.
.
C.
.
D. .
A.
9
9
9
9
Câu 45. Trong các mệnh đề dưới đây, mệnh đề nào
! sai?
un
A. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
!
un
= −∞.
B. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
vn
C. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
D. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
Câu 46. [2] Ơng A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
100.1, 03
(1, 01)3
triệu.
B. m =
triệu.
A. m =
3
(1, 01) − 1
3
100.(1, 01)3
120.(1, 12)3
triệu.
D. m =
C. m =
triệu.
3
(1, 12)3 − 1
Câu 47. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối tứ diện.
B. Khối lập phương.
C. Khối bát diện đều.
D. Khối lăng trụ tam giác.
√
√
Câu 48. Tìm
giá
trị
lớn
nhất
của
hàm
số
y
=
x
+
3
+
6√− x
√
√
A. 2 + 3.
B. 3.
C. 3 2.
D. 2 3.
Câu 49. Trong các khẳng định sau, khẳng định nào sai?√
A. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
B. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
Trang 4/10 Mã đề 1
C. Cả ba đáp án trên.
D. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
2
Câu 50. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 2.
B. 5.
C. 4.
D. 3.
1 3
Câu 51. [2D1-3] Cho hàm số y = − x + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 ≤ m ≤ −1.
B. −2 < m < −1.
C. (−∞; −2) ∪ (−1; +∞). D. (−∞; −2] ∪ [−1; +∞).
Câu 52. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
B. − .
C. −e.
A. − .
e
2e
D. −
1
.
e2
x+3
nghịch biến trên khoảng
Câu 53. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x−m
(0; +∞)?
A. 2.
B. 1.
C. Vô số.
D. 3.
Câu 54. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + 1.
B. T = e + .
C. T = 4 + .
D. T = e + 3.
e
e
1 − xy
Câu 55. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x +
√ y.
√
√
√
18 11 − 29
2 11 − 3
9 11 + 19
9 11 − 19
A. Pmin =
. B. Pmin =
.
C. Pmin =
. D. Pmin =
.
21
3
9
9
x−1 y z+1
Câu 56. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =
và
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x + y − z = 0.
B. 2x − y + 2z − 1 = 0.
C. 10x − 7y + 13z + 3 = 0.
D. −x + 6y + 4z + 5 = 0.
1
Câu 57. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; 3).
B. (−∞; 3).
C. (1; +∞).
D. (−∞; 1) và (3; +∞).
Câu 58. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1134 m.
B. 2400 m.
C. 1202 m.
D. 6510 m.
2
ln x
m
Câu 59. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 22.
C. S = 24.
D. S = 135.
Câu 60. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 21.
C. 23.
D. 24.
Câu 61. Khối đa diện đều loại {3; 5} có số cạnh
A. 20.
B. 12.
√
Câu 62. [12215d] Tìm m để phương trình 4 x+
3
A. m ≥ 0.
B. 0 ≤ m ≤ .
4
1−x2
C. 8.
√
D. 30.
− 3m + 4 = 0 có nghiệm
3
9
C. 0 < m ≤ .
D. 0 ≤ m ≤ .
4
4
− 4.2 x+
1−x2
Trang 5/10 Mã đề 1
Câu 63. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
B. V = S h.
C. V = 3S h.
A. V = S h.
3
2
Câu 64. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.
D. V = S h.
C. Khối lập phương.
D. Khối bát diện đều.
C. 2.
D. +∞.
Câu 65. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 1.
B. 3.
Câu 66. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. 1.
C. 2.
D. Vô nghiệm.
Câu 67. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P.
B. d ⊥ P.
C. d song song với (P).
D. d nằm trên P hoặc d ⊥ P.
log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0 ∨ m = 4.
D. m < 0 ∨ m > 4.
Câu 68. [1226d] Tìm tham số thực m để phương trình
A. m < 0.
B. m ≤ 0.
Câu 69. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Khơng có.
B. Có một hoặc hai.
C. Có một.
D. Có hai.
Câu 70. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều đúng.
B. Chỉ có (II) đúng.
C. Cả hai đều sai.
D. Chỉ có (I) đúng.
!
3n + 2
2
Câu 71. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 4.
B. 5.
C. 3.
D. 2.
Câu 72. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
1
2
1
9
A.
.
B. .
C. .
D.
.
10
5
5
10
Z 2
ln(x + 1)
Câu 73. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. −3.
B. 0.
C. 3.
D. 1.
1
Câu 74. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = −ey − 1.
B. xy0 = ey + 1.
C. xy0 = −ey + 1.
D. xy0 = ey − 1.
Câu 75. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 4.
C. 8.
D. 5.
q
2
Câu 76. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [0; 4].
C. m ∈ [−1; 0].
D. m ∈ [0; 2].
Trang 6/10 Mã đề 1
Câu 77. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 72cm3 .
B. 46cm3 .
C. 27cm3 .
D. 64cm3 .
Câu 78. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
.
B. .
C. 7.
D. 5.
A.
2
2
Câu 79. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 13.
B. log2 2020.
C. 2020.
D. 13.
Câu 80. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n3 lần.
C. 2n2 lần.
D. n3 lần.
Câu 81. Phát biểu nào sau đây là sai?
1
A. lim √ = 0.
n
1
C. lim k = 0 với k > 1.
n
B. lim qn = 1 với |q| > 1.
D. lim un = c (Với un = c là hằng số).
Câu 82. Khối chóp ngũ giác có số cạnh là
A. 9 cạnh.
B. 10 cạnh.
C. 12 cạnh.
D. 11 cạnh.
Câu 83. Khối đa diện đều loại {3; 5} có số đỉnh
A. 8.
B. 20.
C. 30.
D. 12.
Câu 84. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 12.
B. 10.
C. 3.
D. 27.
Câu 85.
√ [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
B. 10.
C. 2.
D. 1.
A. 2.
Câu 86. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 2.
B. −1.
C. 6.
D. 1.
Câu 87. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng
√
a
a 3
a
B.
.
C. a.
D. .
A. .
3
2
2
3a
Câu 88. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng
√
a
a
a 2
2a
A. .
B. .
C.
.
D.
.
3
4
3
3
√
Câu 89. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √
√
√
3
a 6
a 2
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
36
6
6
18
Câu 90. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
ab
1
A. √
.
B. √
.
C. 2
.
D.
.
√
a + b2
a2 + b2
a2 + b2
2 a2 + b2
Trang 7/10 Mã đề 1
√
Câu 91. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√
√ cho là
√
√
πa3 3
πa3 3
πa3 3
πa3 6
A. V =
.
B. V =
.
C. V =
.
D. V =
.
3
2
6
6
√
x2 + 3x + 5
Câu 92. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. .
B. 0.
C. − .
D. 1.
4
4
Câu 93. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .
B. m > .
C. m ≥ .
D. m ≤ .
4
4
4
4
Câu 94. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tam giác.
B. Một khối chóp tam giác, một khối chóp ngữ giác.
C. Hai khối chóp tứ giác.
D. Một khối chóp tam giác, một khối chóp tứ giác.
Câu 95. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (−1; −7).
B. (2; 2).
C. (0; −2).
D. (1; −3).
Câu 96. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 5
a3 3
a3 5
A.
.
B.
.
C.
.
D.
.
6
12
12
4
Câu 97. Dãy số nào có giới hạn bằng 0?!
n
−2
A. un = n2 − 4n.
B. un =
.
3
2n − 3
Câu 98. Tính lim 2
bằng
2n + 3n + 1
A. −∞.
B. +∞.
n3 − 3n
C. un =
.
n+1
!n
6
D. un =
.
5
C. 1.
D. 0.
x+1
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2016
2017
4035
A.
.
B.
.
C. 2017.
D.
.
2017
2018
2018
Câu 100. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa
√ hai đường thẳng S B và AD bằng
√
√
√
a 2
a 2
A.
.
B. a 2.
C. a 3.
D.
.
2
3
Câu 101. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9
tháng thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không
thay đổi trong thời gian gửi.
A. 0, 5%.
B. 0, 8%.
C. 0, 7%.
D. 0, 6%.
!
Câu 99. [3] Cho hàm số f (x) = ln 2017 − ln
Câu 102. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
A. aαβ = (aα )β .
B. β = a β .
C. aα+β = aα .aβ .
D. aα bα = (ab)α .
a
[ = 60◦ , S A ⊥ (ABCD).
Câu 103. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối chóp S .ABCD là
√
3
3
√
a 2
a 2
a3 3
3
A.
.
B.
.
C. a 3.
D.
.
12
4
6
Trang 8/10 Mã đề 1
Câu 104. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh
đề nào dưới đây đúng?
!
!
1
1
B. Hàm số đồng biến trên khoảng ; 1 .
A. Hàm số nghịch biến trên khoảng −∞; .
3
3
!
1
C. Hàm số nghịch biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng (1; +∞).
3
Câu 105. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của
P = xy + x + 2y + 17
A. −5.
B. −15.
C. −9.
D. −12.
Câu 106. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 4 − 2 ln 2.
B. −2 + 2 ln 2.
C. 1.
D. e.
Câu 107. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất
điểm đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 16 m.
B. 12 m.
C. 8 m.
D. 24 m.
Câu 108. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 5.
B. 9.
C. 7.
√
2
Câu 109. Thể tích của khối lập phương
có
cạnh
bằng
a
√
3
√
2a 2
A. V = 2a3 .
B.
.
C. 2a3 2.
3
D. 0.
√
D. V = a3 2.
Câu 110. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 2.
B. 3.
C. 1.
D. 5.
Câu 111. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
=
=
và d0 :
=
=
đường thẳng d :
2
3
−5
3
−2
−1
x y−2 z−3
x y z−1
A. =
=
.
B. = =
.
2
3
−1
1 1
1
x−2 y−2 z−3
x−2 y+2 z−3
C.
=
=
.
D.
=
=
.
2
2
2
2
3
4
Câu 112. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −e2 .
B. 2e4 .
C. 2e2 .
D. −2e2 .
Câu 113. [1] Đạo hàm của hàm số y = 2 x là
A. y0 = 2 x . ln 2.
B. y0 = 2 x . ln x.
C. y0 =
1
2 x . ln
x
.
D. y0 =
1
.
ln 2
Câu 114. [2] Cho hàm số f (x) = x ln x. Giá trị f (e) bằng
2
A. 2e.
B. 2e + 1.
0
C. 3.
D.
2
.
e
Câu 115. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3.
Tính f (2) + f (4)?
A. 4.
B. 10.
C. 11.
D. 12.
√
√
Câu 116. Phần thực và√phần ảo của số phức
√ z = 2 − 1 − 3i lần lượt√l
√
B. Phần thực là √2 − 1, phần ảo là √
3.
A. Phần thực là 1√− 2, phần ảo là −√ 3.
C. Phần thực là 2, phần ảo là 1 − 3.
D. Phần thực là 2 − 1, phần ảo là − 3.
Câu 117. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 − 2e
1 + 2e
A. m =
.
B. m =
.
C. m =
.
4e + 2
4 − 2e
4 − 2e
D. m =
1 − 2e
.
4e + 2
Trang 9/10 Mã đề 1
Câu 118. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.
√
√
√
√
5 13
.
C. 2 13.
A. 2.
B.
D. 26.
13
Câu 119. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi
M, N và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,
√ N, P bằng
√
√
√
20 3
14 3
.
B. 6 3.
.
D. 8 3.
A.
C.
3
3
Z 3
a
a
x
Câu 120. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
√
d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 4.
B. P = 16.
C. P = 28.
D. P = −2.
Câu 121. Biểu thức nào sau đây không có nghĩa
√
√
−3
A. 0−1 .
B. (−1)−1 .
C. (− 2)0 .
D.
−1.
1
Câu 122. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = e − 1.
B. xy = −e + 1.
C. xy0 = −ey − 1.
D. xy0 = ey + 1.
0 0 0 0
Câu 123.
a. Khoảng cách từ C đến √
AC 0 bằng
√ ABCD.A B C D cạnh √
√ [2] Cho hình lâp phương
a 6
a 6
a 6
a 3
.
B.
.
C.
.
D.
.
A.
2
7
2
3
Câu 124. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 21.
B. P = −10.
C. P = −21.
D. P = 10.
!
1
1
1
Câu 125. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 2.
B. 0.
C. 1.
D. .
2
Câu 126. Khối đa diện đều loại {4; 3} có số đỉnh
A. 4.
B. 8.
C. 6.
D. 10.
Câu 127. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
Câu 128. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
un
Câu 129. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 0.
B. +∞.
C. −∞.
D. 1.
Câu 130. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đơi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 11 năm.
C. 13 năm.
D. 10 năm.
- - - - - - - - - - HẾT- - - - - - - - - Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
B
3.
5.
C
2.
C
B
7. A
4.
D
6.
D
8. A
9. A
10.
C
11.
B
12.
13.
B
14.
B
15.
B
16.
B
17.
B
18.
19.
21.
D
20.
B
24.
B
B
26. A
B
27.
29.
C
22. A
23. A
25.
D
D
28. A
30.
B
31. A
32.
33.
D
34. A
35.
D
36.
37. A
C
B
C
38. A
39.
D
40. A
41.
D
42.
C
43. A
44.
C
45. A
46. A
47. A
48.
C
49. A
50.
C
51. A
52.
53.
55.
54.
D
B
C
58.
D
59. A
D
60. A
61.
D
62.
B
64.
63. A
67.
D
56.
57.
65.
B
C
D
1
D
66.
C
68.
C
69.
70.
B
71. A
72. A
73. A
74.
75. A
76.
77.
78.
C
D
C
B
80.
79. A
81.
B
82.
B
D
B
83.
D
84.
C
85.
D
86.
C
87.
88.
C
89.
D
90. A
91. A
92.
D
93.
97.
B
99.
B
96.
102.
D
108.
C
B
D
B
112. A
114.
115.
D
116.
117.
D
118.
B
C
D
B
120. A
121. A
122. A
123.
127.
C
110. A
113. A
125.
B
106.
107. A
119.
D
104.
105.
111.
B
100. A
B
109.
D
98.
C
101.
C
94.
C
95.
103.
D
D
124.
126.
C
D
128.
129. A
130. A
2
C
B
C