Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg 3 (844)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (154.25 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m , 0.
B. m < 0.
C. m = 0.

D. m > 0.

Câu 2. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (2; +∞).
C. (0; 2).

D. R.

Câu 3. Khối đa diện đều loại {3; 5} có số mặt
A. 20.
B. 30.

D. 8.

C. 12.


Câu 4. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦√. Thể tích khối chóp S .ABCD
√ là

4a3 3
a3 3
8a3 3
8a3 3
.
B.
.
C.
.
D.
.
A.
3
9
9
9
Câu 5. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≤ 0.
B. m > − .
C. m ≥ 0.
D. − < m < 0.
4

4
x+3
Câu 6. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 1.
B. 2.
C. 3.
D. Vơ số.
!
!
!
1
2
2016
4x
. Tính tổng T = f
+f
+ ··· + f
Câu 7. [3] Cho hàm số f (x) = x
4 +2
2017
2017
2017
2016
A. T = 1008.
B. T =
.
C. T = 2016.

D. T = 2017.
2017
Câu 8. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 5}.
B. {3; 4}.
C. {5; 3}.
D. {4; 3}.
Câu 9. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 3 nghiệm.
B. 1 nghiệm.
C. Vô nghiệm.

D. 2 nghiệm.

Câu 10. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 8 m.
B. 12 m.
C. 24 m.
D. 16 m.
Câu 11. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 10 .(3)40
C 20 .(3)30
C 40 .(3)10
C 20 .(3)20
A. 50 50 .
B. 50 50 .

C. 50 50 .
D. 50 50 .
4
4
4
4
3
Câu 12. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 1200 cm2 .
C. 160 cm2 .
D. 120 cm2 .
Z 1
6
2
3
Câu 13. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
. Tính
f (x)dx.
0
3x + 1
A. 6.

B. −1.

C. 4.

D. 2.
Trang 1/11 Mã đề 1



Câu 14. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 10.
B. 12.
C. 4.
D. 11.
!4x
!2−x
3
2


Câu 15. Tập các số x thỏa mãn
3
2
"
!
#
#
"
!
2
2
2
2
A. − ; +∞ .
B. −∞; .
C. −∞; .

D.
; +∞ .
3
3
5
5
Câu 16. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp √
S .ABCD là
2a3
2a3 3
4a3 3
4a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
!2x−1
!2−x
3
3

Câu 17. Tập các số x thỏa mãn


5
5
A. (−∞; 1].
B. [3; +∞).
C. [1; +∞).
D. (+∞; −∞).
Câu 18. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 − ln x.
B. y0 = x + ln x.

C. y0 = 1 + ln x.

Câu 19. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 0.
B. 3.
C. 2.

D. y0 = ln x − 1.
D. 1.

Câu 20. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng





20 3
14 3
B. 8 3.
C.
.
D.
.
A. 6 3.
3
3

Câu 21. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị nhỏ nhất của biểu thức P = x + 2y thuộc tập nào dưới
" đây?
"
!
!
5
5
A. [3; 4).
B. (1; 2).
C. 2; .
D.
;3 .
2
2
x+1
Câu 22. Tính lim
bằng
x→−∞ 6x − 2

1
1
1
B. 1.
C. .
D. .
A. .
2
3
6
3
2
Câu 23. Giá
√ trị cực đại của hàm số y =
√ x − 3x − 3x + 2


A. 3 − 4 2.
B. −3 − 4 2.
C. 3 + 4 2.
D. −3 + 4 2.
Câu 24. [4-1246d] Trong tất cả các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất
√ của |z|
A. 1.
B. 2.
C. 5.
D. 3.
Câu 25. Khối lập phương thuộc loại
A. {4; 3}.
B. {3; 4}.

Câu 26.
√ Tìm giá trị lớn nhất của hàm số y =
A. 3 2.
B. 3.



C. {3; 3}.

x + 3 + 6 −√x
C. 2 + 3.

D. {5; 3}.

D. 2 3.

Câu 27. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


a3
a3 3
a3 3
A.
.
B.
.
C.
.
D. a3 .

3
2
6
mx − 4
Câu 28. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 45.
B. 34.
C. 26.
D. 67.
Trang 2/11 Mã đề 1


x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
√ có độ dài bằng
√ đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB

B. 2.
C. 2 2.
D. 2 3.
A. 6.
Câu 29. [3-1214d] Cho hàm số y =

Câu 30. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
đến đường√thẳng BD0 bằng




abc b2 + c2
b a2 + c2
c a2 + b2
a b2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 31. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
C. f (x) có giá trị nhỏ nhất trên K.

B. f (x) có giá trị lớn nhất trên K.
D. f (x) xác định trên K.
3

Câu 32. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e3 .
B. e2 .
C. e.

2
2
2
1 + 2 + ··· + n
Câu 33. [3-1133d] Tính lim
n3
1
2
A. 0.
B. .
C. .
3
3

D. e5 .

D. +∞.

Câu 34. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 2.
B. 7.
C. 3.
D. 1.
d = 120◦ .
Câu 35. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
D. 4a.
A. 3a.

B. 2a.
C.
2
Câu 36. [1] Hàm số nào đồng√biến trên khoảng (0; +∞)?
A. y = loga x trong đó a = 3 − 2.
B. y = log √2 x.
C. y = log 14 x.
D. y = log π4 x.

Câu 37. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 63.
C. Vô số.
D. 64.
Câu 38. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có hai.
B. Có một hoặc hai.
C. Khơng có.
D. Có một.
2n2 − 1
Câu 39. Tính lim 6
3n + n4
A. 0.
B. 1.

C. 2.

D.


2
.
3

2

Câu 40. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log3 2.
B. 1 − log2 3.
C. 3 − log2 3.

D. 2 − log2 3.

Câu 41. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−1; 1).
B. (−∞; −1).
C. (−∞; 1).

D. (1; +∞).

Câu 42. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 72cm3 .
B. 64cm3 .
C. 46cm3 .
D. 27cm3 .
Câu 43. Khối đa diện đều loại {4; 3} có số cạnh
A. 10.
B. 12.


C. 20.

D. 30.
Trang 3/11 Mã đề 1


Câu 44. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
Thể tích khối chóp S .ABC√là
vng góc
√ với đáy và S C = a 3.3 √

a3 6
a 3
a3 3
2a3 6
A.
.
B.
.
C.
.
D.
.
12
2
4
9
Câu 45. Hình lập phương có bao nhiêu mặt phẳng đối xứng?

A. 9 mặt.
B. 8 mặt.
C. 6 mặt.
Câu 46. Dãy số nào sau đây có giới hạn là 0?
n2 − 2
1 − 2n
A. un =
.
B.
u
=
.
n
5n − 3n2
5n + n2

C. un =

n2 + n + 1
.
(n + 1)2

D. 7 mặt.

D. un =

n2 − 3n
.
n2


Câu 47. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
a
8a
5a
2a
A. .
B.
.
C.
.
D.
.
9
9
9
9
x2 − 5x + 6
x→2
x−2
A. 5.
B. 1.
2n − 3
Câu 49. Tính lim 2
bằng
2n + 3n + 1
A. 1.
B. 0.
Câu 48. Tính giới hạn lim


C. 0.

D. −1.

C. −∞.

D. +∞.

Câu 50. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 6 cạnh, 4 mặt. B. 3 đỉnh, 3 cạnh, 3 mặt. C. 4 đỉnh, 8 cạnh, 4 mặt. D. 6 đỉnh, 6 cạnh, 4 mặt.
! x3 −3mx2 +m
1
Câu 51. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m , 0.
B. m ∈ R.
C. m = 0.
D. m ∈ (0; +∞).
Câu 52. Cho hai hàm y = f (x), y = g(x)
Z có đạo hàm
Z trên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f 0 (x)dx =
g0 (x)dx.
Z
Z
B. Nếu

f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
C. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.

Câu 53. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số nghịch biến trên khoảng (−2; 1).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
Câu 54. Giá trị của giới hạn lim
A. −1.

B. 1.

2−n
bằng
n+1

C. 2.

D. 0.


C. 5.

D. 7.

Câu 55. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 9.

B. 0.

Trang 4/11 Mã đề 1


Câu 56. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC) một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √

a3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.

4
8
12
4
Câu 57. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối 12 mặt đều.
C. Khối bát diện đều. D. Khối tứ diện đều.
Câu 58. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 14 năm.
C. 12 năm.
D. 10 năm.
 π
Câu 59. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


3 π6
2 π4
1 π
e .
e .
A.
B.
C. 1.
D. e 3 .

2
2
2
Câu 60. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (1; 3; 2).
B. (2; 4; 6).
C. (2; 4; 3).
D. (2; 4; 4).
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử
Câu 61. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
của S bằng
A. 4.
B. 2.
C. 3.
D. 5.
Câu 62. Khối đa diện đều loại {5; 3} có số mặt
A. 8.
B. 20.
1 − 2n
Câu 63. [1] Tính lim
bằng?
3n + 1
2
A. 1.
B. − .

3
log7 16
Câu 64. [1-c] Giá trị của biểu thức
log7 15 − log7
A. 4.
B. 2.

C. 30.

C.
15
30

2
.
3

D. 12.

D.

1
.
3

bằng
C. −4.

D. −2.


Câu 65. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tứ giác và một hình chóp ngũ giác.
B. Hai hình chóp tam giác.
C. Một hình chóp tam giác và một hình chóp tứ giác.
D. Hai hình chóp tứ giác.
Câu 66. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.

C. Khối lập phương.
D. Khối tứ diện đều.
1
Câu 67. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 2 < m ≤ 3.
C. 2 ≤ m ≤ 3.
D. 0 ≤ m ≤ 1.

Câu 68. [1] Biết log6 a = 2 thì log6 a bằng
A. 36.
B. 6.
C. 108.
D. 4.
5
Câu 69. Tính lim
n+3
A. 1.
B. 0.

C. 2.
D. 3.
Trang 5/11 Mã đề 1


Câu 70. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 2.

B. 4.
2n + 1
Câu 71. Tìm giới hạn lim
n+1
A. 1.
B. 0.

C. 3.

D. 1.

C. 3.

D. 2.

Câu 72. Tính mơ đun của số phức z√biết (1 + 2i)z2 = 3 + 4i. √
C. |z| = 2 5.
A. |z| = 5.

B. |z| = 5.

D. |z| =

√4
5.

Câu 73. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
ab
1
1
A. 2
.
B. √
.
C. √
.
D. √
.
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
Câu 74. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a 3

a
a
C.
.
D. .
A. a.
B. .
2
2
3
Câu 75. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Một tứ diện đều và bốn hình chóp tam giác đều.
B. Năm tứ diện đều.
C. Bốn tứ diện đều và một hình chóp tam giác đều.
D. Năm hình chóp tam giác đều, khơng có tứ diện đều.
Câu 76. Khối đa diện đều loại {5; 3} có số cạnh
A. 8.
B. 30.

C. 12.

D. 20.

Câu 77. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 2ac
3b + 3ac
A.

.
B.
.
C.
.
D.
.
c+2
c+1
c+3
c+2
Câu 78. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 18 lần.
B. Tăng gấp 3 lần.
C. Tăng gấp 9 lần.
D. Tăng gấp 27 lần.
1

Câu 79. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (−∞; 1).
B. D = R.
C. D = (1; +∞).
Câu 80. Hàm số y =
A. x = 1.

x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 0.


C. x = 2.

D. D = R \ {1}.
D. x = 3.

Câu 81. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 2; −1).
B. ~u = (2; 1; 6).
C. ~u = (3; 4; −4).
D. ~u = (1; 0; 2).
Trang 6/11 Mã đề 1


Câu 82. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −1.
B. m = −3.
C. m = 0.

D. m = −2.



Câu 83. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√ cho là



3
πa 6
πa3 3
πa3 3
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
6
3
2

Câu 84. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?

Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ.
100.(1, 01)3
100.1, 03
triệu.
B. m =
triệu.
A. m =
3
3
120.(1, 12)3
(1, 01)3
C. m =
triệu.
D.
m
=
triệu.
(1, 12)3 − 1
(1, 01)3 − 1
Câu 85. [1] Tính lim
A. +∞.

x→3

x−3
bằng?
x+3
B. 0.

C. 1.


D. −∞.

x+1
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2017
4035
C.
.
D.
.
2018
2018
!

Câu 86. [3] Cho hàm số f (x) = ln 2017 − ln
A. 2017.

B.

2016
.
2017

Câu 87. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
2
9
1

1
B. .
C.
.
D.
.
A. .
5
5
10
10
Câu 88. [1] Đạo hàm của hàm số y = 2 x là
1
A. y0 = 2 x . ln 2.
B. y0 = x
.
2 . ln x

C. y0 =

1
.
ln 2

D. y0 = 2 x . ln x.

Câu 89. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 9 năm.

B. 7 năm.
C. 8 năm.
D. 10 năm.
Câu 90. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a

a3 15
a3 15
a3 5
a3
A.
.
B.
.
C.
.
D.
.
5
25
25
3
Câu 91. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 92. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 9.

C. 13.

D. 0.

Câu 93. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim− f (x) = f (b).
B. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a

x→b

x→a

x→b

C. lim− f (x) = f (a) và lim+ f (x) = f (b).

x→a

x→b

x→a

x→b

D. lim+ f (x) = f (a) và lim+ f (x) = f (b).

Trang 7/11 Mã đề 1



Câu 94. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e−2 + 2; m = 1.
C. M = e−2 + 1; m = 1.
D. M = e2 − 2; m = e−2 + 2.
Câu 95. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
B. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
C. Z
F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
u0 (x)
dx = log |u(x)| + C.
D.
u(x)
Câu 96. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 2.
B. +∞.
C. 1.
D. 3.
Câu 97. Khối đa diện đều loại {5; 3} có số đỉnh
A. 30.
B. 8.
1
bằng
Câu 98. [1] Giá trị của biểu thức log √3
10
A. 3.


B. −3.

C. 20.

C.

1
.
3

D. 12.

1
D. − .
3




x = 1 + 3t




Câu 99. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua





z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là











x
=
1
+
7t
x
=
−1
+
2t
x
=
−1
+

2t
x = 1 + 3t
















A. 
.
B. 
y=1+t
y = −10 + 11t . C. 
y = −10 + 11t . D. 
y = 1 + 4t .

















z = 1 + 5t
z = 6 − 5t
z = −6 − 5t
z = 1 − 5t
 π π
3
Câu 100. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 1.
B. 3.
C. −1.
D. 7.
tan x + m
nghịch biến trên khoảng
Câu 101. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
m tan x + 1
 π
0; .
4

A. (1; +∞).
B. (−∞; −1) ∪ (1; +∞). C. (−∞; 0] ∪ (1; +∞). D. [0; +∞).
Câu 102. Khối đa diện đều loại {3; 5} có số đỉnh
A. 8.
B. 20.

C. 12.

Câu 103. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 10 mặt.
B. 4 mặt.
C. 6 mặt.
Câu 104. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {5; 3}.
B. {3; 4}.
C. {4; 3}.
x−2
Câu 105. Tính lim
x→+∞ x + 3
2
A. 1.
B. − .
C. −3.
3
!
1
1
1
Câu 106. Tính lim
+

+ ··· +
1.2 2.3
n(n + 1)
3
A. .
B. 2.
C. 1.
2

D. 30.
D. 8 mặt.
D. {3; 3}.

D. 2.

D. 0.
Trang 8/11 Mã đề 1


Câu 107. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a 3
a3 6
a3 6

A.
.
B.
.
C.
.
D.
.
48
24
8
24

Câu 108. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh
bên S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) √
bằng


3a 58
3a
3a 38
a 38
.
B.
.
C.
.
D.
.

A.
29
29
29
29
4x + 1
Câu 109. [1] Tính lim
bằng?
x→−∞ x + 1
A. 2.
B. 4.
C. −4.
D. −1.
q
Câu 110. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x + log23 x + 1 + 4m −
√ i
h
1 = 0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [0; 2].
C. m ∈ [0; 4].
D. m ∈ [−1; 0].
Câu 111. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc
60◦ . Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n.
Thể tích khối


√ chóp S .ABMN là 3 √
3
4a 3

a3 3
2a3 3
5a 3
.
B.
.
C.
.
D.
.
A.
3
3
2
3
1
Câu 112. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3

một đoạn có độ dài bằng 24.
A. −3 ≤ m ≤ 4.
B. m = −3, m = 4.
C. m = 4.
D. m = −3.
Câu 113. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách √
từ C đến đường thẳng BB0 bằng 2, khoảng
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =

. Thể tích khối lăng trụ đã cho bằng
3 √

2 3
.
D. 2.
A. 1.
B. 3.
C.
3
d = 300 .
Câu 114. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V của khối lăng trụ đã cho. √


3a3 3
a3 3
3
3
A. V = 6a .
B. V = 3a 3.
C. V =
.
D. V =
.
2
2
Câu 115. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Tăng lên n lần.

B. Tăng lên (n − 1) lần. C. Không thay đổi.
D. Giảm đi n lần.
2

Câu 116. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
1
A. √ .
B. 2 .
C. 3 .
e
2e
2 e

D.

2
.
e3

a
1
+
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
C. 7.
D. 2.

Câu 117. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) =

A. 4.

B. 1.

Câu 118. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 + 2 sin 2x.
B. −1 + 2 sin 2x.
C. −1 + sin x cos x.

D. 1 − sin 2x.
Trang 9/11 Mã đề 1


Câu 119. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. 7.
B.
.
C. .
D. 5.
2
2
2
4
3
Câu 120. Cho z √
là nghiệm của phương trình
√ x + x + 1 = 0. Tính P = z + 2z − z
−1 − i 3

−1 + i 3
.
B. P =
.
C. P = 2.
D. P = 2i.
A. P =
2
2
log(mx)
Câu 121. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m = 4.
B. m < 0 ∨ m > 4.
C. m < 0.
D. m ≤ 0.
x−3 x−2 x−1
x
Câu 122. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [2; +∞).

B. (2; +∞).
C. (−∞; 2).
D. (−∞; 2].

x2 + 3x + 5
Câu 123. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. 1.
B. .
C. 0.
D. − .
4
4
Câu 124. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD

√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng


a 2
a 2
.
B. 2a 2.
C.
.
D. a 2.

A.
2
4
Câu 125. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
1
A. −2.
B. − .
C. .
D. 2.
2
2
Câu 126. Hàm số nào sau đây khơng có cực trị
1
x−2
.
C. y = x3 − 3x.
D. y = x + .
A. y = x4 − 2x + 1.
B. y =
2x + 1
x
2
x
Câu 127. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x − 3)e trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 22016 .
B. 1.
C. e2016 .
D. 0.

Câu 128. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa
√ hai đường thẳng BD và√S C bằng


a 6
a 6
a 6
A.
.
B.
.
C. a 6.
D.
.
2
3
6
Câu 129.
√ Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.
A. 3 3.
B. 9.
C. 8.
D. 27.
Câu 130. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
23
1637
1079
1728

A.
.
B.
.
C.
.
D.
.
68
4913
4913
4913
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2.

3. A

4.

5.


C

8. A

9.

10.

D

11. A

D

12. A
C

13.

14.

B

16.

15. A
17.

D


18.

C

19. A

C

20. A

21.

D

22.

23.

D

24.

25. A

D
B

26. A
B


28.

29.

D

31. A
33.

D

6.

B

7. A

27.

C

B

B

30.

D

32.


D

34. A
36.

B

37. A

38.

B

39. A

40.

D

41. A

42.

D

35.

43.


C

B

44. A

45. A

46.

47.

B

48.

49.

B

50. A

51.

D

52.

C


53. A

54. A

55. A

56.

57. A

58. A

59.

B

B

60.

D
B
B

62.

61. A
63.

B


64.

65.

B

66.

67.

B

68.
1

D
C
B
D


69.

70.

B
D

71.

73.

74. A

75. A

76.

77.

85.

D
C
B

87.

84.

D

90.
D

C
B
D

92.


93. A

94. A
D

95.

96. A
98.

C

97.
B

D

100. A

101. A

102.

103.

C

C


104. A

105. A

106.

107.
111.

D

88. A

C

91.

109.

82.
86.

89. A

99.

D

80. A


C

81.

B

78.

D

83.

D

72.

B

79.

C

D

108.

C
B

110.


B
C

112.

D
B

113.

D

114.

115.

D

116.

B
B

117.

C

118.


119.

C

120.

121. A
123.

C

122. A
D

124. A

125. A
127.

C

126.
D

B

128.

129. A


130.

2

D
B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×