TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 11 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
ln2 x
m
Câu 1. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 24.
C. S = 22.
D. S = 135.
Câu 2. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp tứ giác.
B. Hai khối chóp tứ giác.
C. Một khối chóp tam giác, một khối chóp ngữ giác.
D. Hai khối chóp tam giác.
Câu 3. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Khơng tồn tại.
B. 0.
C. 13.
D. 9.
Câu 4. Tính diện tích hình phẳng giới hạn bởi các đường√y = xe x , y = 0, x = 1.
1
3
3
A. .
B. 1.
C.
.
D. .
2
2
2
2
Câu 5. Giá trị của lim (3x − 2x + 1)
A. +∞.
x→1
B. 3.
C. 2.
D. 1.
Câu 6. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −6.
B. 0.
C. −3.
D. 3.
√
√
4n2 + 1 − n + 2
bằng
Câu 7. Tính lim
2n − 3
3
A. +∞.
B. 2.
C. 1.
D. .
2
Câu 8. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác S AB đều và nằm trong mặt
Thể tích khối chóp
√ phẳng vng góc với 3(ABCD).
√
√ S .ABCD là
3
3
√
a
2
a
3
a
3
A. a3 3.
B.
.
C.
.
D.
.
2
4
2
Câu 9. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 2).
B. (−∞; 0) và (2; +∞). C. (0; +∞).
D. (0; 2).
Câu 10. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m < 3.
C. m > 3.
D. m ≥ 3.
√
Câu 11. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng
√
√
√
3a 58
3a
a 38
3a 38
A.
.
B.
.
C.
.
D.
.
29
29
29
29
Câu 12. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.
C. Khối 20 mặt đều.
D. Khối bát diện đều.
Câu 13. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 8.
B. 6.
C. 4.
D. 3.
Trang 1/11 Mã đề 1
1 3
x − 2x2 + 3x − 1.
3
C. (1; +∞).
D. (−∞; 1) và (3; +∞).
Câu 14. Tìm tất cả các khoảng đồng biến của hàm số y =
A. (1; 3).
B. (−∞; 3).
Câu 15. Tính lim
x→2
A. 1.
x+2
bằng?
x
B. 0.
C. 3.
Câu 16. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
B. V = S h.
C. V = S h.
A. V = S h.
3
2
D. 2.
D. V = 3S h.
Câu 17. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
120.(1, 12)3
100.(1, 01)3
triệu.
B. m =
triệu.
A. m =
3
(1, 12)3 − 1
(1, 01)3
100.1, 03
C. m =
triệu.
D. m =
triệu.
3
(1, 01)3 − 1
0 0 0 0
0
Câu 18.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 3
a 6
A.
.
B.
.
C.
.
D.
.
3
2
2
7
d = 60◦ . Đường chéo
Câu 19. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
√
a3 6
2a3 6
4a3 6
A.
.
B.
.
C.
.
D. a3 6.
3
3
3
Câu 20. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4
√
√
√
√
a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
24
12
6
36
Câu 21. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là
3
3
2a 3
a3
a3
4a 3
A.
.
B.
.
C.
.
D.
.
3
3
6
3
Câu 22. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. Vô nghiệm.
C. 2.
D. 3.
Câu 23. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
A. .
B. 1.
C.
.
2
2
D. 2.
Câu 24. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 20 .(3)30
C 10 .(3)40
C 40 .(3)10
C 20 .(3)20
A. 50 50 .
B. 50 50 .
C. 50 50 .
D. 50 50 .
4
4
4
4
Trang 2/11 Mã đề 1
x+2
Câu 25. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 1.
B. 3.
C. 2.
D. Vơ số.
Câu 26. [2]√Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 2√
B. m = ±1.
C. m = ±3.
D. m = ± 3.
A. m = ± 2.
Câu 27. Phát biểu nào sau đây là sai?
1
A. lim k = 0 với k > 1.
n
C. lim qn = 1 với |q| > 1.
1
B. lim √ = 0.
n
D. lim un = c (Với un = c là hằng số).
Câu 28. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −2 ≤ m ≤ 2.
B. m ≤ 3.
C. −3 ≤ m ≤ 3.
D. m ≥ 3.
Câu 29. Khối đa diện đều loại {3; 3} có số mặt
A. 4.
B. 5.
C. 2.
2
x − 12x + 35
Câu 30. Tính lim
x→5
25 − 5x
2
C. −∞.
A. +∞.
B. − .
5
Câu 31. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 27.
B. 12.
C. 10.
D. 3.
Câu 32. Khối đa diện đều loại {4; 3} có số mặt
A. 10.
B. 12.
D. 6.
C. 8.
D. 3.
D.
2
.
5
Câu 33. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 10 mặt.
B. 4 mặt.
C. 8 mặt.
D. 6 mặt.
Câu 34. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −8.
B. x = 0.
C. x = −5.
D. x = −2.
Câu 35. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
3. Thể
vng góc
với
đáy
và
S
C
=
a
√
√ tích khối chóp S .ABC
√là
√
3
3
3
a 6
2a 6
a 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
9
4
2
Câu 36.
√ [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 2.
B. 10.
C. 2.
D. 1.
Câu 37.
√ [4-1246d] Trong tất cả các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất của |z|
A. 5.
B. 1.
C. 3.
D. 2.
Câu 38. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một hoặc hai.
B. Có hai.
C. Khơng có.
D. Có một.
Câu 39. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 1.
B. 2.
C. 3.
D. 0.
Câu 40. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (−1; −7).
B. (0; −2).
C. (1; −3).
D. (2; 2).
Câu 41. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. .
B. .
C. 1.
D. 3.
2
2
Trang 3/11 Mã đề 1
Câu 42. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −e2 .
B. 2e4 .
C. −2e2 .
D. 2e2 .
Câu 43. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 2.
B. 1.
C. 3.
D. 0.
Câu 44. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. .
C. .
D. 4.
4
8
2
Câu 45. Khối đa diện đều loại {4; 3} có số đỉnh
A. 8.
B. 6.
C. 10.
D. 4.
Câu 46. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 4.
B. 10.
C. 11.
D. 12.
Câu 47. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8 √
B. m = ±1.
C. m = ±3.
D. m = ± 3.
A. m = ± 2.
Câu 48. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là
√
a3 3
a3 3
a3
A.
.
B.
.
C.
.
12
8
4
Câu 49. Khối đa diện đều loại {3; 5} có số đỉnh
A. 30.
B. 20.
C. 8.
2−n
Câu 50. Giá trị của giới hạn lim
bằng
n+1
A. 2.
B. 1.
C. 0.
⊥ (ABC) và (S BC) hợp với
√
a3 3
D.
.
4
D. 12.
D. −1.
Câu 51. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới đây?
"
!
5
5
A. 2; .
B. (1; 2).
C. [3; 4).
D.
;3 .
2
2
√
ab.
mx − 4
Câu 52. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 67.
B. 26.
C. 34.
D. 45.
Câu 53. Khối đa diện đều loại {5; 3} có số cạnh
A. 8.
B. 12.
C. 30.
D. 20.
Câu 54. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên sai.
B. Cả hai câu trên đúng. C. Chỉ có (II) đúng.
D. Chỉ có (I) đúng.
Trang 4/11 Mã đề 1
√
Câu 55. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 1 nghiệm.
B. Vô nghiệm.
C. 3 nghiệm.
D. 2 nghiệm.
Câu 56. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.
C. Khối bát diện đều.
D. Khối 20 mặt đều.
Câu 57. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. .
B. 9.
C. 6.
D. .
2
2
x−3 x−2
x−3
x−2
Câu 58. [3-12212d] Số nghiệm của phương trình 2 .3 − 2.2 − 3.3 + 6 = 0 là
A. 3.
B. 1.
C. Vô nghiệm.
D. 2.
Câu 59. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 3ac
3b + 2ac
.
B.
.
C.
.
D.
.
A.
c+3
c+1
c+2
c+2
1
Câu 60. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e + 1.
B. xy = e − 1.
C. xy0 = ey + 1.
D. xy0 = −ey − 1.
Câu 61. Tính lim
x→1
A. −∞.
x3 − 1
x−1
B. +∞.
C. 3.
D. 0.
Câu 62. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; −8).
B. A(−4; 8).
C. A(−4; −8)(.
D. A(4; 8).
Câu 63. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 14 năm.
C. 11 năm.
D. 10 năm.
Câu 64. Trong các khẳng định sau, khẳng định nào sai?
A. Z
F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
u0 (x)
B.
dx = log |u(x)| + C.
u(x)
C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
1
Câu 65. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (−∞; 1).
B. D = (1; +∞).
C. D = R \ {1}.
D. D = R.
1
Câu 66. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2) ∪ (−1; +∞). B. −2 < m < −1.
C. −2 ≤ m ≤ −1.
D. (−∞; −2] ∪ [−1; +∞).
!
3n + 2
2
Câu 67. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 3.
B. 5.
C. 2.
D. 4.
Z 2
ln(x + 1)
Câu 68. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. −3.
B. 0.
C. 1.
D. 3.
Trang 5/11 Mã đề 1
Câu 69. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là
√
√ hình chóp S .ABCD với mặt
2
2
2
a 7
11a
a2 5
a 2
.
B.
.
C.
.
D.
.
A.
4
8
32
16
√
√
Câu 70. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
9
3
3
C. 0 ≤ m ≤ .
D. 0 ≤ m ≤ .
A. m ≥ 0.
B. 0 < m ≤ .
4
4
4
Câu 71.√Biểu thức nào sau đây √
khơng có nghĩa
−3
0
A. (− 2) .
B.
−1.
C. (−1)−1 .
D. 0−1 .
Câu 72. [1] Giá trị của biểu thức 9log3 12 bằng
A. 24.
B. 144.
2
2
C. 2.
D. 4.
Câu 73. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.424.000.
C. 102.016.000.
D. 102.423.000.
Câu 74. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10.
B. 6.
C. 8.
D. 4.
Câu 75. [1] Đạo hàm của hàm số y = 2 x là
1
1
.
C. y0 = 2 x . ln 2.
D. y0 =
.
A. y0 = 2 x . ln x.
B. y0 = x
2 . ln x
ln 2
Câu 76. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 3.
C. Vô nghiệm.
D. 1.
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
Câu 77. [3-1132d] Cho dãy số (un ) với un =
n2 + 1
1
A. lim un = .
B. lim un = 1.
2
C. lim un = 0.
D. Dãy số un khơng có giới hạn khi n → +∞.
log 2x
Câu 78. [3-1229d] Đạo hàm của hàm số y =
là
x2
1 − 2 ln 2x
1 − 2 log 2x
1
1 − 4 ln 2x
.
B. y0 = 3
.
C. y0 =
.
A. y0 = 3
.
D. y0 =
3
2x ln 10
x ln 10
x
2x3 ln 10
Câu 79. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Tăng lên (n − 1) lần. B. Tăng lên n lần.
C. Không thay đổi.
D. Giảm đi n lần.
Câu 80. Khối đa diện đều loại {3; 4} có số mặt
A. 12.
B. 6.
C. 8.
D. 10.
Câu 81. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 4 mặt.
C. 3 mặt.
D. 6 mặt.
Câu 82. Khối đa diện đều loại {3; 3} có số đỉnh
A. 3.
B. 4.
C. 5.
D. 2.
2mx + 1
1
Câu 83. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 1.
B. −5.
C. −2.
D. 0.
Câu 84. Tính mơ đun của số phức z√biết (1 + 2i)z2 = 3 + 4i. √
4
A. |z| = 5.
B. |z| = 5.
C. |z| = 5.
√
D. |z| = 2 5.
Trang 6/11 Mã đề 1
√
Câu 85. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
B. .
C. −3.
D. 3.
A. − .
3
3
Câu 86. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng
√
a 3
a
a
A. a.
B.
.
C. .
D. .
2
2
3
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 87. [3-12217d] Cho hàm số y = ln
x+1
0
y
0
y
A. xy = e + 1.
B. xy = −e + 1.
C. xy0 = ey − 1.
D. xy0 = −ey − 1.
Z 1
Câu 88. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0
A. 1.
B.
1
.
2
C. 0.
D.
1
.
4
2
Câu 89. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 7.
B. 6.
C. 8.
D. 5.
Câu 90. Khối đa diện đều loại {3; 5} có số mặt
A. 8.
B. 12.
D. 30.
C. 20.
Câu 91. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối tứ diện.
B. Khối lập phương.
C. Khối lăng trụ tam giác.
D. Khối bát diện đều.
Câu 92. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5}.
B. {3}.
C. {2}.
D. {5; 2}.
Câu 93. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Đường phân giác góc phần tư thứ nhất.
B. Hai đường phân giác y = x và y = −x của các góc tọa độ.
C. Trục thực.
D. Trục ảo.
3
Câu 94. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e3 .
B. e.
C. e5 .
D. e2 .
Câu 95. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số nghịch biến trên khoảng (−∞; 0).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số đồng biến trên khoảng (1; 2).
√
Câu 96. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là
√
√
√
a3
a3 3
a3 3
3
A. a 3.
B.
.
C.
.
D.
.
4
12
3
2x + 1
Câu 97. Tính giới hạn lim
x→+∞ x + 1
1
A. −1.
B. 2.
C. 1.
D. .
2
2
2
2
1 + 2 + ··· + n
Câu 98. [3-1133d] Tính lim
n3
2
1
A. .
B. +∞.
C. .
D. 0.
3
3
Câu 99. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
Trang 7/11 Mã đề 1
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (II).
B. (I) và (III).
C. (II) và (III).
D. Cả ba mệnh đề.
!
x+1
Câu 100. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2017
4035
2016
.
B.
.
C. 2017.
D.
.
A.
2017
2018
2018
Câu 101. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e2 − 2; m = e−2 + 2.
B. M = e−2 − 2; m = 1.
C. M = e−2 + 2; m = 1.
D. M = e−2 + 1; m = 1.
Câu 102. Phát biểu nào sau đây là sai?
A. lim un = c (un = c là hằng số).
1
C. lim k = 0.
n
B. lim qn = 0 (|q| > 1).
1
D. lim = 0.
n
Câu 103. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi
M, N và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,
√ N, P bằng
√
√
√
14 3
20 3
A.
.
B. 8 3.
.
D. 6 3.
C.
3
3
Câu 104. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 4 mặt. B. 3 đỉnh, 3 cạnh, 3 mặt. C. 4 đỉnh, 6 cạnh, 4 mặt. D. 4 đỉnh, 8 cạnh, 4 mặt.
Câu 105. Cho hai hàm y = f (x), y = Z
g(x) có đạo hàm
Z trên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f 0 (x)dx =
g0 (x)dx.
Z
Z
0
B. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Câu 106. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. (−∞; −3].
B. [−3; 1].
C. [1; +∞).
D. [−1; 3].
Câu 107. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 3 lần.
B. Tăng gấp 27 lần.
C. Tăng gấp 9 lần.
D. Tăng gấp 18 lần.
√3
4
Câu 108. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
7
5
2
5
A. a 3 .
B. a 3 .
C. a 3 .
D. a 8 .
Câu 109. Cho hình chóp S .ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là
√
√
3
3
a 3
a 6
a3 2
a3 3
A.
.
B.
.
C.
.
D.
.
24
48
16
48
Trang 8/11 Mã đề 1
Câu 110. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 2.
B. 1.
1
3|x−1|
C. 3.
= 3m − 2 có nghiệm duy
D. 4.
3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng
√
a
2a
a 2
a
A. .
B.
.
C.
.
D. .
3
3
3
4
Câu 111. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
Câu 112. Dãy số nào sau đây có giới hạn là 0?
n2 − 2
n2 + n + 1
A. un =
.
B.
u
=
.
n
5n − 3n2
(n + 1)2
C. un =
n2 − 3n
.
n2
D. un =
1 − 2n
.
5n + n2
Câu 113. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 3.
B. V = 6.
C. V = 4.
D. V = 5.
√
Câu 114. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vô số.
B. 63.
C. 64.
D. 62.
Câu 115. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. Cả ba câu trên đều sai.
B. F(x) = G(x) trên khoảng (a; b).
C. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
D. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
Câu 116. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
B. m ≤ .
C. m < .
D. m > .
A. m ≥ .
4
4
4
4
log2 240 log2 15
Câu 117. [1-c] Giá trị biểu thức
−
+ log2 1 bằng
log3,75 2 log60 2
A. 4.
B. 1.
C. 3.
D. −8.
Câu 118. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
= .
x→+∞ g(x)
b
D. lim [ f (x)g(x)] = ab.
A. lim [ f (x) − g(x)] = a − b.
B. lim
x→+∞
C. lim [ f (x) + g(x)] = a + b.
x→+∞
x→+∞
2
Câu 119. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 4.
B. 2.
C. 5.
D. 3.
6
Câu 120. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2 f (x3 ) − √
. Tính
3x + 1
Z 1
f (x)dx.
0
A. −1.
B. 4.
C. 2.
Câu 121. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 − 2e
1 + 2e
A. m =
.
B. m =
.
C. m =
.
4 − 2e
4e + 2
4 − 2e
D. 6.
D. m =
1 + 2e
.
4e + 2
Trang 9/11 Mã đề 1
Câu 122. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n2 lần.
B. n3 lần.
C. n3 lần.
D. 2n3 lần.
Câu 123. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −2.
B. −4.
C.
.
D. −7.
27
Câu 124. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −1.
B. m = 0.
C. m = −3.
D. m = −2.
Câu 125. Tứ diện đều thuộc loại
A. {3; 4}.
B. {3; 3}.
C. {4; 3}.
Câu 126. Cho f (x) = sin x − cos x − x. Khi đó f (x) bằng
A. 1 + 2 sin 2x.
B. −1 + 2 sin 2x.
C. 1 − sin 2x.
2
D. {5; 3}.
0
2
D. −1 + sin x cos x.
Câu 127. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.
√
√
√
√
5 13
A. 26.
B. 2 13.
C. 2.
D.
.
13
Câu 128. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
3
3
a 6
a3 6
a3 3
a 6
A.
.
B.
.
C.
.
D.
.
24
8
48
24
Câu 129.
Cho hàm số
Z
Z f (x), g(x) liên tục trên R. Trong các
Z mệnh đề sau, mệnhZđề nào sai? Z
k f (x)dx = f
A.
Z
C.
f (x)dx, k ∈ R, k , 0.
Z
Z
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
B.
Z
D.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
Z
f (x)g(x)dx =
f (x)dx g(x)dx.
1
Câu 130. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3
√
một đoạn có độ dài bằng 24.
A. −3 ≤ m ≤ 4.
B. m = −3, m = 4.
C. m = −3.
D. m = 4.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/11 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
3.
2. A
4.
B
B
5.
C
6.
7.
C
8.
D
10.
D
9.
B
11. A
12.
13.
D
14.
15.
D
16. A
17.
D
18. A
19.
D
20.
21. A
D
C
26.
27.
C
28.
29. A
B
C
B
C
30.
D
D
31.
D
32.
33.
D
34. A
D
36.
35. A
37.
D
38. A
39.
D
40.
44. A
45. A
46.
47. A
48.
49.
D
50.
51.
D
52.
53.
B
42. A
B
43. A
54.
C
55.
D
57. A
59.
D
C
B
D
62.
63.
C
64.
66.
68. A
1
D
58.
C
D
B
D
60.
B
D
56.
61.
67.
D
24. A
25.
65.
B
22.
23.
41.
C
B
D
B
C
69.
70.
B
71.
73.
D
B
75.
77. A
B
74.
B
78.
D
83.
D
B
84.
B
C
88.
90.
91. A
92. A
B
D
B
B
102.
B
104.
105.
D
106.
B
C
100.
D
C
B
108.
109.
111.
C
98.
103.
107.
C
96.
99. A
101.
B
94.
B
95. A
97.
C
82.
89. A
93.
B
86. A
B
87.
D
80.
C
81.
85.
72.
76.
C
79.
D
D
110.
B
C
B
112.
D
D
113.
C
114.
115.
C
116.
B
118.
B
120.
B
117.
D
119. A
121.
B
122.
D
124.
123. A
125.
C
B
126.
127.
D
128. A
129.
D
130.
2
B
B