Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg 4 (770)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (149.88 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 1. Cho hình chóp S .ABC có BAC
Thể tích khối chóp S .ABC là




a3 3
a3 3
a3 2
2
A. 2a 2.
B.
.
C.
.
D.
.
12
24
24




Câu 2. Phần thực √
và phần ảo của số phức
z
=
2

1

3i lần lượt l√


3.
B. Phần thực là 2 −√1, phần ảo là √
3.
A. Phần thực là √2, phần ảo là 1 − √
D. Phần thực là 1 − 2, phần ảo là − 3.
C. Phần thực là 2 − 1, phần ảo là − 3.
Câu 3. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 4. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng 2n.
B. Số mặt của khối chóp bằng 2n+1.
C. Số mặt của khối chóp bằng số cạnh của khối chóp.
D. Số đỉnh của khối chóp bằng 2n + 1.
Câu 5. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)

A. 9.
B. 13.
C. Không tồn tại.

D. 0.

Câu 6. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 8 năm.
B. 7 năm.
C. 10 năm.
D. 9 năm.
Câu 7. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 1.
B. 2.
C. 6.
Z 2
ln(x + 1)
Câu 8. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 3.
B. 0.
C. 1.

D. −1.

D. −3.


Câu 9. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. 2.
C. Vô nghiệm.
D. 1.
Câu 10. Khối đa diện đều loại {4; 3} có số đỉnh
A. 8.
B. 4.

C. 6.

Câu 11. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
B. .
C. −3.
A. − .
3
3

D. 10.

D. 3.

Câu 12. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số nghịch biến trên khoảng (−2; 1).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).

Trang 1/10 Mã đề 1


Câu 13. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 27 m.
B. 1587 m.
C. 387 m.
D. 25 m.
Câu 14. Giá trị của lim(2x2 − 3x + 1) là
A. +∞.

x→1

B. 1.

C. 2.

D. 0.

Câu 15. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a 58

3a 38
a 38
3a
.
B.
.
C.
.
D.
.
A.
29
29
29
29
Câu 16. Khối đa diện đều loại {5; 3} có số mặt
A. 20.
B. 30.
C. 8.
D. 12.
Câu 17. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng



b a2 + c2
a b2 + c2
abc b2 + c2

c a2 + b2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 18. Khối đa diện đều loại {3; 3} có số cạnh
A. 8.
B. 6.
C. 4.
2
3
7n − 2n + 1
Câu 19. Tính lim 3
3n + 2n2 + 1
2
7
A. - .
B. .
C. 1.
3
3
Câu 20. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là

1
1
A. − 2 .
C. −e.
B. − .
e
e
Câu 21. Dãy số nào có giới hạn bằng 0?
!n
n3 − 3n
−2
2
A. un =
.
B. un = n − 4n.
C. un =
.
n+1
3

D. 5.

D. 0.

D. −

1
.
2e


!n
6
D. un =
.
5

Câu 22. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [1; +∞).
B. [−3; 1].
C. (−∞; −3].
D. [−1; 3].
Câu 23. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {4; 3}.
B. {5; 3}.
C. {3; 3}.

D. {3; 4}.

Câu 24. [1] Đạo hàm của làm số y = log x là
ln 10
1
.
B. y0 =
.
A. y0 =
x
x ln 10

1

D. y0 = .
x

C.

1
.
10 ln x

Câu 25.
√ Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.
A. 3 3.
B. 9.
C. 8.
D. 27.
Câu 26. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; 6, 5].
B. [6, 5; +∞).
C. (4; +∞).

D. (−∞; 6, 5).

Câu 27. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?

A. y = log π4 x.
B. y = loga x trong đó a = 3 − 2.
C. y = log 14 x.
D. y = log √2 x.
Trang 2/10 Mã đề 1



Câu 28. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
1
ab
.
B. 2
.
D. √
.
A. √
.
C. √
2
a +b
2 a2 + b2
a2 + b2
a2 + b2
Câu 29. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 23.
B. 22.
C. 24.
D. 21.

Câu 30. Thể tích của khối lập phương có cạnh bằng a 2 √



2a3 2
C.
.
D. V = a3 2.
A. V = 2a3 .
B. 2a3 2.
3
4
2
Câu 31. Tìm m để hàm số y = x − 2(m + 1)x − 3 có 3 cực trị
A. m > −1.
B. m > 0.
C. m > 1.
D. m ≥ 0.
mx − 4
Câu 32. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 45.
B. 34.
C. 67.
D. 26.
Câu 33.
bằng 1 là:
√ Thể tích của khối lăng trụ tam giác đều có cạnh √
3
3
3
A.

.
B. .
C.
.
4
4
2
Câu 34. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 3.

B. 1.

Câu 35. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối lập phương.
B. Khối bát diện đều.


3
D.
.
12
1
3|x−1|

= 3m − 2 có nghiệm duy

C. 4.

D. 2.


C. Khối tứ diện đều.

D. Khối 12 mặt đều.

Câu 36. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 10 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
d = 30◦ , biết S BC là tam giác đều
Câu 37. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
16
26

9
13
Câu 38. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P hoặc d ⊥ P.
B. d song song với (P).
C. d ⊥ P.
D. d nằm trên P.



x = 1 + 3t




Câu 39. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là












x
=
1
+
3t
x
=
−1
+
2t
x
=
−1
+
2t
x = 1 + 7t

















A. 
B. 
.
y = 1 + 4t .
y = −10 + 11t . C. 
y = −10 + 11t . D. 
y=1+t

















z = 1 − 5t
z = 6 − 5t
z = −6 − 5t
z = 1 + 5t
log 2x

Câu 40. [1229d] Đạo hàm của hàm số y =
x2
1 − 2 ln 2x
1
1 − 4 ln 2x
A. y0 = 3
.
B. y0 = 3
.
C. y0 =
.
x ln 10
2x ln 10
2x3 ln 10

D. y0 =

1 − 2 log 2x
.
x3
Trang 3/10 Mã đề 1



Câu 41. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 3ac
A.
.
B.
.
C.
.
c+1
c+2
c+2
cos n + sin n
Câu 42. Tính lim
n2 + 1
A. +∞.
B. 0.
C. 1.

D.

3b + 2ac
.
c+3

D. −∞.

Câu 43. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞


A. lim [ f (x) + g(x)] = a + b.

x→+∞

x→+∞

C. lim [ f (x)g(x)] = ab.

B. lim [ f (x) − g(x)] = a − b.
x→+∞

D. lim

x→+∞

x→+∞

Câu 44. [1] Giá trị của biểu thức 9log3 12 bằng
A. 144.
B. 24.

f (x) a
= .
g(x) b

C. 2.

D. 4.


Câu 45. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1079
23
1728
1637
.
B.
.
C.
.
D.
.
A.
4913
4913
68
4913
Câu 46. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 3.
B. 2.
C. 1.
D. Vơ số.
Câu 47. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lập phương.
B. Hình chóp.
C. Hình lăng trụ.
Câu 48. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1

1
B. V = S h.
C. V = 3S h.
A. V = S h.
2
3
Câu 49. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
B. −2.
C. .
A. − .
2
2
Câu 50. Hàm số y =
A. x = 0.

x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 3.

D. Hình tam giác.
D. V = S h.

D. 2.

C. x = 2.

D. x = 1.


C. 0.

D.

C. +∞.

D. 0.


C. (− 2)0 .

D. 0−1 .

2

1−n
Câu 51. [1] Tính lim 2
bằng?
2n + 1
1
1
A. − .
B. .
2
3
Câu 52. Tính lim
x→1

A. −∞.


x3 − 1
x−1

B. 3.

Câu 53. Biểu thức nào sau đây √
khơng có nghĩa
−3
−1
A. (−1) .
B.
−1.

1
.
2

Câu 54. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
√ C là

3
a 3
a3 3
a3
3
A.
.

B. a .
C.
.
D.
.
6
2
3
Câu 55. Khối đa diện đều loại {4; 3} có số cạnh
A. 12.
B. 20.

C. 30.

D. 10.
Trang 4/10 Mã đề 1


Câu 56. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5

3
−2
−1
x y−2 z−3
x−2 y−2 z−3
=
=
.
B. =
=
.
A.
2
3
4
2
3
−1
x−2 y+2 z−3
x y z−1
C.
=
=
.
D. = =
.
2
2
2
1 1

1
Câu 57. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = 4 + .
B. T = e + 3.
C. T = e + .
D. T = e + 1.
e
e
Câu 58. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 12 m.
B. 16 m.
C. 24 m.
D. 8 m.
x2
Câu 59. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = , m = 0.
B. M = e, m = 1.
C. M = e, m = 0.
D. M = e, m = .
e
e
Câu 60. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 13.

B. 13.
C. log2 2020.
D. 2020.
Câu 61. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
B. a3 .
C.
.
D.
.
A.
24
6
12
Câu 62. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 63. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un
B. Nếu lim un
C. Nếu lim un
D. Nếu lim un


!
un
= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
!
un
= a , 0 và lim vn = ±∞ thì lim
= 0.
v! n
un
= a > 0 và lim vn = 0 thì lim
= +∞.
vn
= +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.

Câu 64. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4




a3 3
a3 3

a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
36
24
6
12
Câu 65. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.
Câu 66. [1-c] Giá trị của biểu thức
A. 2.

B. −2.

log7 16
log7 15 − log7

C. Khối tứ diện đều.
15
30

D. Khối lập phương.


bằng
C. 4.

D. −4.
Trang 5/10 Mã đề 1


Câu 67. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 72cm3 .
B. 46cm3 .
C. 27cm3 .
D. 64cm3 .
Câu 68. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; 0) và (1; +∞). B. (−1; 0).
C. (−∞; −1) và (0; +∞). D. (0; 1).


Câu 69. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là



a3
a3 3
a3 3
3
A. a 3.
B.

.
C.
.
D.
.
4
12
3
!
1
1
1
Câu 70. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
A. 2.
B. +∞.
C. .
D. .
2
2
Câu 71. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 6.
B. 5.
C. −6.
D. −5.
t

9
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
Câu 72. [4] Xét hàm số f (t) = t
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 1.
B. 0.
C. Vô số.
D. 2.
2

Câu 73. Khối đa diện đều loại {3; 4} có số đỉnh
A. 4.
B. 6.
C. 10.
D. 8.
2
2
2
1 + 2 + ··· + n
Câu 74. [3-1133d] Tính lim
n3
1
2
A. 0.
B. .
C. .
D. +∞.
3
3

Câu 75. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (I) đúng.

B. Cả hai câu trên sai.

C. Chỉ có (II) đúng.
D. Cả hai câu trên đúng.
1
Câu 76. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 0 < m ≤ 1.
C. 2 ≤ m ≤ 3.
D. 2 < m ≤ 3.
Câu 77. [1] Đạo hàm của hàm số y = 2 x là
A. y0 = 2 x . ln x.

B. y0 = 2 x . ln 2.

C. y0 =


1
.
ln 2

D. y0 =

1
2 x . ln

x

.

!
1
1
1
Câu 78. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. .
B. 1.
C. 0.
D. 2.
2
Câu 79. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không

rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 10 năm.
C. 13 năm.
D. 11 năm.
Trang 6/10 Mã đề 1


Câu 80. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối

√ chóp S .ABCD là

3
3
a 3
a3 3
a3 2
a 6
.
B.
.
C.
.
D.
.
A.
48

48
24
16
1 − xy
Câu 81. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x +
√ y.



18 11 − 29
2 11 − 3
9 11 − 19
9 11 + 19
A. Pmin =
. B. Pmin =
.
C. Pmin =
. D. Pmin =
.
21
3
9
9
4x + 1
Câu 82. [1] Tính lim
bằng?
x→−∞ x + 1

A. −1.
B. 4.
C. 2.
D. −4.
Câu 83. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (II) sai.

B. Không có câu nào C. Câu (III) sai.
sai.

D. Câu (I) sai.

Câu 84. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a 3
a
a
B. a.
C.
.
D. .
A. .
3
2
2

Câu 85. [1] Tập
! xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
A. −∞; − .
; +∞ .
B. −∞; .
C.
2
2
2

!
1
D. − ; +∞ .
2

Câu 86. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 9 mặt.
C. 7 mặt.

D. 8 mặt.

Câu 87. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 1 nghiệm.
B. Vô nghiệm.
C. 2 nghiệm.


D. 3 nghiệm.

Câu 88. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −7.
B. −3.
C. −5.

D. Khơng tồn tại.

Câu 89. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 4 mặt.
C. 9 mặt.

D. 6 mặt.

Câu 90.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nàoZsai?
( f (x) − g(x))dx =

A.
Z
C.

( f (x) + g(x))dx =

f (x)dx −
Z


f (x)dx +

g(x)dx.

B.

Z

Z
g(x)dx.

1
Câu 91. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. − .
B. .
3
3

D.

C. 3.

f (x)g(x)dx =
f (x)dx g(x)dx.
Z

k f (x)dx = f
f (x)dx, k ∈ R, k , 0.

D. −3.
Trang 7/10 Mã đề 1


log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m ≤ 0.
D. m < 0 ∨ m > 4.

Câu 92. [3-1226d] Tìm tham số thực m để phương trình
A. m < 0 ∨ m = 4.

B. m < 0.

Câu 93. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể
√ tích khối chóp S .ABCD là
3
10a
3
A. 40a3 .
B.
.
C. 10a3 .
D. 20a3 .
3


x2 + 3x + 5
Câu 94. Tính giới hạn lim
x→−∞
4x − 1
1
1
C. − .
D. 1.
A. 0.
B. .
4
4
Câu 95. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. 4.
C. .
D. .
4
2
8
log2 240 log2 15
Câu 96. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. 1.

B. 4.
C. −8.
D. 3.
Câu 97. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 20 mặt đều.


C. Khối tứ diện đều.
2

Câu 98. [12215d] Tìm m để phương trình 4 x+ 1−x
9
B. m ≥ 0.
A. 0 ≤ m ≤ .
4
Câu 99. Nếu một hình chóp đều có chiều cao và
lên?
A. n3 lần.
B. n3 lần.



− 3m + 4 = 0 có nghiệm
3
3
C. 0 < m ≤ .
D. 0 ≤ m ≤ .
4
4
cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng


− 4.2 x+

1−x2

C. 2n3 lần.

Câu 100. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim
A. +∞.

B. −∞.

D. Khối 12 mặt đều.

C. 0.

D. 2n2 lần.
un
bằng
vn
D. 1.

Câu 101. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách √
từ C đến đường thẳng BB0 bằng 2, khoảng
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3



2 3
A. 2.
B. 1.
C. 3.
D.
.
3
Câu 102. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 10 năm.
C. 12 năm.
D. 14 năm.
n−1
Câu 103. Tính lim 2
n +2
A. 0.
B. 3.
C. 2.
D. 1.
2−n
Câu 104. Giá trị của giới hạn lim
bằng
n+1
A. 2.
B. 1.

C. 0.
D. −1.
Câu 105. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm tứ diện đều.
Trang 8/10 Mã đề 1


B. Năm hình chóp tam giác đều, khơng có tứ diện đều.
C. Bốn tứ diện đều và một hình chóp tam giác đều.
D. Một tứ diện đều và bốn hình chóp tam giác đều.
2n + 1
n+1
B. 1.

Câu 106. Tìm giới hạn lim
A. 3.

C. 2.

D. 0.

Câu 107. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 1; m = 1.
B. M = e−2 − 2; m = 1.
C. M = e2 − 2; m = e−2 + 2.
D. M = e−2 + 2; m = 1.
Câu 108. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0)
lần lượt là hình
! chiếu của B, C lên các !cạnh AC, AB. Tọa độ hình chiếu của A lên BC là !

5
7
8
; 0; 0 .
B.
; 0; 0 .
C. (2; 0; 0).
D.
; 0; 0 .
A.
3
3
3
Câu 109. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a3 3
a3 6
a 6
.
B.
.
C.
.
D.

.
A.
48
8
24
24
Câu 110. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −1.
B. m = 0.
C. m = −3.

D. m = −2.

Câu 111. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 4 lần.
B. Tăng gấp 8 lần.
C. Tăng gấp đôi.
D. Tăng gấp 6 lần.
1
Câu 112. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = 4.
B. m = −3.
C. m = −3, m = 4.
D. −3 ≤ m ≤ 4.
Câu 113. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 6 mặt. B. 5 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 5 mặt.

Câu 114. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Khơng thay đổi.
B. Giảm đi n lần.
C. Tăng lên n lần.
D. Tăng lên (n − 1) lần.
Câu 115. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦√. Thể tích khối chóp S .ABCD

√ là
3
3
3
3
8a 3
4a 3
a 3
8a 3
A.
.
B.
.
C.
.
D.
.
3
9
9

9
Câu 116. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 1200 cm2 .
B. 160 cm2 .
C. 160 cm2 .
D. 120 cm2 .
2mx + 1
1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
Câu 117. Giá trị lớn nhất của hàm số y =
m−x
3
A. 1.
B. 0.
C. −2.
D. −5.
Câu 118. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5}.
B. {3}.
C. {5; 2}.
D. {2}.
Trang 9/10 Mã đề 1





x=t





Câu 119. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
A. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x + 3) + (y + 1) + (z − 3) = .
D. (x − 3) + (y + 1) + (z + 3) = .
4
4

Câu 120. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
A. 5.
B. 68.
C. 34.
D.
.
17
Câu 121. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất

√ của hàm số. Khi đó tổng M + m

A. 7 3.
B. 16.
C. 8 2.
D. 8 3.
Câu 122. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a =
.
B. log2 a = − loga 2.
C. log2 a =
.

D. log2 a = loga 2.
loga 2
log2 a

Câu 123. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả
bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 62.
C. Vô số.
D. 64.

Câu 124. Xác định phần ảo của √
số phức z = ( 2 + 3i)2

A. 7.
B. 6 2.
C. −6 2.
D. −7.
Câu 125. Khối đa diện đều loại {5; 3} có số đỉnh
A. 8.
B. 30.

C. 20.

√3
Câu 126. [1-c] Cho a là số thực dương .Giá trị của biểu thức a : a2 bằng
7
5
2
B. a 3 .

C. a 3 .
A. a 3 .

D. 12.

4
3

5

D. a 8 .

Câu 127. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tứ giác và một hình chóp ngũ giác.
B. Một hình chóp tam giác và một hình chóp tứ giác.
C. Hai hình chóp tam giác.
D. Hai hình chóp tứ giác.
Câu 128. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C) và (A0C 0 D) bằng




2a 3
a 3
a 3
B.
.
C.

.
D.
.
A. a 3.
2
2
3
Câu 129. Khối lập phương thuộc loại
A. {3; 3}.
B. {3; 4}.
C. {4; 3}.
D. {5; 3}.
Câu 130. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 − sin 2x.
B. −1 + sin x cos x.
C. 1 + 2 sin 2x.

D. −1 + 2 sin 2x.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D


2.

3.

D

4. A

5.

D

6.

D

8.

D

7.

C

9.

B

10. A


11.

B

12. A

13. A

14.

D
D

15.

B

16.

17.

B

18.

21.

C
B


25. A

D

22.

B

24.

B

26. A

27.
29.

B

20.

19. A
23.

C

D

28.

30.

B

31. A

32.

B

33. A

34.

B

35.

B

C

B

36.

37.
39.

D


38. A
40. A

B

41.

C

42.
D

43.
47.

D

B

48.

B

52.

53.

D


D
B

54.

C

56.

55. A
59.

46.
50.

B

51. A

57.

B

44. A

45. A
49.

C


B

58.
C

B

60. A
D

61.

D

62.

B

63.

C

64.

D

65.

C


66.

D

67.

C

68.
1

B


69.

D

70. A

71.

D

72.

73.

B


74.

75.
77.

D
B

76.

D
B

79. A

D

78.

B

80.

B

81.

B

82.


B

83.

B

84.

B

86.

B

D

85.
87.
90.

88.

C

91. A

B

D


93.

92. A
94.

C

95. A

96.

C

97.

98.

D

B

99. A

C

100.

101. A


102. A

103. A

104.

D

105.

C

106.

107.

D
B

109.

108. A
110.

D

111.

C


112.

D
B

113.

D
D

114.

B

115.

116.

B

117.

B

119.

118. A
120.

D


122. A
124.

D

B

126. A
128.

D

130.

D

2

D

121.

B

123.

B

125.


C

127.

C

129.

C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×