Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg 4 (583)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.22 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1.√ Biểu thức nào sau đây khơng
√ 0có nghĩa
−3
A.
−1.
B. (− 2) .

C. (−1)−1 .

D. 0−1 .

Câu 2. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của khối
chóp A.GBC
A. V = 4.
B. V = 3.
C. V = 6.
D. V = 5.
log(mx)
Câu 3. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m ≤ 0.


B. m < 0.
C. m < 0 ∨ m = 4.
D. m < 0 ∨ m > 4.
d = 300 .
Câu 4. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
Độ dài cạnh bên
CC 0 = 3a. Thể tích V của
√ khối lăng trụ đã cho.

3
3

3a 3
a 3
.
B. V =
.
C. V = 3a3 3.
D. V = 6a3 .
A. V =
2
2
Câu 5. Cho số phức z thỏa mãn |z +√3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.

A. |z| = 17.
B. |z| = 10.
C. |z| = 10.
D. |z| = 17.
Câu 6. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1

1
1
B. .
C. .
D. 4.
A. .
4
8
2
Câu 7. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD
√ là
3
10a 3
A. 40a3 .
B. 20a3 .
C.
.
D. 10a3 .
3
Câu 8. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều rộng
bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 120 cm2 .
C. 160 cm2 .
D. 1200 cm2 .
Câu 9. Khối đa diện đều loại {4; 3} có số cạnh
A. 12.
B. 30.


C. 20.

D. 10.

Câu 10. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 9 năm.
B. 10 năm.
C. 8 năm.
D. 7 năm.
Câu 11. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
A. a

αβ

α β

= (a ) .

B. a

α+β

α

β

= a .a .


α α

α

C. a b = (ab) .

α

D. β = a β .
a

Câu 12. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −15.
B. −5.
C. −12.
D. −9.
x−3 x−2 x−1
x
Câu 13. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].

B. [2; +∞).
C. (−∞; 2).
D. (2; +∞).
Trang 1/10 Mã đề 1


Câu 14. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Một tứ diện đều và bốn hình chóp tam giác đều.
B. Năm tứ diện đều.
C. Bốn tứ diện đều và một hình chóp tam giác đều.
D. Năm hình chóp tam giác đều, khơng có tứ diện đều.
Câu 15. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
B. 6.
C. .
D. 9.
A. .
2
2

Câu 16. [1] Biết log6 a = 2 thì log6 a bằng
A. 4.
B. 36.
C. 6.
D. 108.
Câu 17. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
B. y = log 14 x.

A. y = log π4 x.
C. y = log √2 x.

D. y = loga x trong đó a =


3 − 2.

Câu 18. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng

1
.
D. f 0 (0) = 1.
ln 10
tan x + m
Câu 19. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. [0; +∞).
B. (−∞; 0] ∪ (1; +∞). C. (−∞; −1) ∪ (1; +∞). D. (1; +∞).
A. f 0 (0) = ln 10.

B. f 0 (0) = 10.

C. f 0 (0) =

Câu 20.

f (x), g(x) liên
đề nào sai? Z
Z Cho hàm số Z
Z tục trên R. Trong cácZmệnh đề sau, mệnh Z
A.
f (x)g(x)dx =
f (x)dx g(x)dx.
B.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
Z
Z
Z
Z
C.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
D.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
d = 120◦ .
Câu 21. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 4a.
B. 3a.
C. 2a.
D.
.

2
Câu 22. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 9 mặt.
C. 6 mặt.
D. 3 mặt.
Câu 23. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8 √
D. m = ± 3.
A. m = ±3.
B. m = ±1.
C. m = ± 2.
Câu 24. Khối đa diện đều loại {3; 5} có số mặt
A. 8.
B. 30.

C. 12.

D. 20.

Câu 25. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


3
3
a 3
a 6
a3 3
a3 2

A.
.
B.
.
C.
.
D.
.
24
48
48
16
Câu 26. Khối đa diện đều loại {5; 3} có số cạnh
A. 20.
B. 8.
C. 12.
D. 30.
Câu 27. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. 3.
C. 1.
D. Vô nghiệm.
Trang 2/10 Mã đề 1


Câu 28. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 6.
B. 3.
C. 8.

D. 4.
Câu 29. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên sai.

B. Chỉ có (II) đúng.

C. Cả hai câu trên đúng. D. Chỉ có (I) đúng.
[ = 60◦ , S O
Câu 30. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ BC) bằng

√ với mặt đáy và S O = a. Khoảng cách từ O đến (S

a 57
a 57
2a 57
C.
.
B. a 57.

.
D.
.
A.
19
17
19
Câu 31. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 5 mặt. B. 5 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 6 cạnh, 6 mặt.
1
Câu 32. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2] ∪ [−1; +∞). B. −2 < m < −1.
C. −2 ≤ m ≤ −1.
D. (−∞; −2) ∪ (−1; +∞).
Câu 33. Khối đa diện đều loại {3; 3} có số mặt
A. 3.
B. 2.

C. 5.

D. 4.

Câu 34. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vơ nghiệm.
B. 1.
C. 2.
D. 3.
Câu 35. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].

67
A. −7.
B.
.
C. −4.
D. −2.
27
Câu 36. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng 2n.
B. Số đỉnh của khối chóp bằng 2n + 1.
C. Số mặt của khối chóp bằng số cạnh của khối chóp.
D. Số mặt của khối chóp bằng 2n+1.
Câu 37. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 10 cạnh, 6 mặt.
Câu 38. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
z
x+1 y−5
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 2; −1).
B. ~u = (2; 1; 6).

C. ~u = (3; 4; −4).
D. ~u = (1; 0; 2).
Câu 39. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Hai mặt.
B. Một mặt.
C. Bốn mặt.
x−2
Câu 40. Tính lim
x→+∞ x + 3
A. 1.
B. 2.
C. −3.

D. Ba mặt.

2
D. − .
3
Trang 3/10 Mã đề 1


Câu 41. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Hai đường phân giác y = x và y = −x của các góc tọa độ.
B. Đường phân giác góc phần tư thứ nhất.
C. Trục thực.
D. Trục ảo.
Câu 42. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. 2.
C. Vô nghiệm.

D. 3.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
B. xy0 = −ey + 1.
C. xy0 = ey − 1.
D. xy0 = ey + 1.

Câu 43. [3-12217d] Cho hàm số y = ln
A. xy0 = −ey − 1.

Câu 44. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 3}.
B. {4; 3}.
C. {3; 4}.

D. {5; 3}.

Câu 45. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ đứng là hình lăng trụ đều.
C. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ tứ giác đều là hình lập phương.
Câu 46. [3-1132d] Cho dãy số (un ) với un =
A. lim un = 1.
C. lim un = 0.

1 + 2 + ··· + n

. Mệnh đề nào sau đây đúng?
n2 + 1
1
B. lim un = .
2
D. Dãy số un không có giới hạn khi n → +∞.

Câu 47. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối lập phương.

C. Khối bát diện đều.
!x
1
1−x
Câu 48. [2] Tổng các nghiệm của phương trình 3 = 2 +

9
A. log2 3.
B. − log2 3.
C. 1 − log2 3.

D. Khối tứ diện đều.

D. − log3 2.

Câu 49. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 5}.
B. {3; 4}.
C. {5; 3}.


D. {4; 3}.

Câu 50. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của hình chóp S .ABCD với√mặt phẳng (AIC) có diện√tích là

2
a 5
11a2
a2 2
a2 7
.
B.
.
C.
.
D.
.
A.
16
32
4
8
Câu 51. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 3

a3 5
a3 5
A.
.
B.
.
C.
.
D.
.
12
12
4
6
Câu 52. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m = 0.
B. m > 0.
C. m < 0.

D. m , 0.
!
3n + 2
2
Câu 53. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 5.
B. 3.
C. 4.

D. 2.
Trang 4/10 Mã đề 1


Câu 54. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
A. 15 tháng.
B. 16 tháng.
C. 18 tháng.
D. 17 tháng.
Câu 55. Dãy số nào sau đây có giới hạn là 0?
1 − 2n
n2 − 2
.
B. un =
.
A. un =
2
5n − 3n
5n + n2

C. un =

n2 − 3n
.
n2

D. un =


n2 + n + 1
.
(n + 1)2

Câu 56. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 5%.
B. 0, 8%.
C. 0, 6%.
D. 0, 7%.
Câu 57.
Z [1233d-2] Mệnh đề nào sau đây sai?

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
B.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
C.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z

D.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.

A.

Câu 58.! Dãy số nào sau đây có giới
!n hạn là 0?
n
4
1
.
B.
.
A.
3
e

!n
5
C.
.
3

Câu 59. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 1.
B. 2.
C. 3.
x+2
bằng?

Câu 60. Tính lim
x→2
x
A. 2.
B. 0.
C. 1.

!n
5
D. − .
3
D. 5.

D. 3.

Câu 61. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
!
1
C. Hàm số đồng biến trên khoảng ; 1 .
3
x+1
Câu 62. Tính lim
bằng
x→−∞ 6x − 2
1
A. .
B. 1.
2
!

1
1
1
Câu 63. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 2.
B. .
2

!
1
B. Hàm số nghịch biến trên khoảng −∞; .
!3
1
D. Hàm số nghịch biến trên khoảng ; 1 .
3

C.

1
.
3

C. 0.

D.


1
.
6

D. 1.

Câu 64. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. .
B. 1.
C. 3.
D. .
2
2
Câu 65. Trong các khẳng định sau, khẳng định nào sai?
Trang 5/10 Mã đề 1


Z
A.
Z
C.

0dx = C, C là hằng số.
dx = x + C, C là hằng số.

Z


1
dx = ln |x| + C, C là hằng số.
Z x
xα+1
D.
xα dx =
+ C, C là hằng số.
α+1
B.

Câu 66. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = 3S h.
C. V = S h.
2
3
Câu 67. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 4.

B. 1.
7n − 2n3 + 1
Câu 68. Tính lim 3
3n + 2n2 + 1
A. 1.
B. 0.


D. V = S h.
1
3|x−1|

C. 3.

= 3m − 2 có nghiệm duy

D. 2.

2

7
2
D. .
C. - .
3
3
3
2
Câu 69. Cho hàm số y = x − 3x − 1. Mệnh đề nào sau đây đúng?
A. Hàm số đồng biến trên khoảng (1; 2).
B. Hàm số nghịch biến trên khoảng (−∞; 0).
C. Hàm số nghịch biến trên khoảng (0; 1).
D. Hàm số nghịch biến trên khoảng (1; +∞).
Câu 70. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể tích khối chóp S .ABC là √



a3 3
a3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
4
8
4
Câu 71. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là √


a3 3
a3 3
2a3 3
3
A. a 3.
B.
.
C.
.
D.

.
3
6
3
1
bằng
Câu 72. [1] Giá trị của biểu thức log √3
10
1
1
C. .
D. −3.
A. 3.
B. − .
3
3
0
Câu 73. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
√ C đến đường thẳng BB bằng 2, khoảng
0
0
cách từ A đến các đường thẳng BB và CC lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2
3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3



2 3
A. 2.
B.
.
C. 3.
D. 1.
3
Câu 74. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = (0; +∞).
B. D = R \ {1}.
C. D = R.
D. D = R \ {0}.
Câu 75. Mệnh đề nào sau đây sai?
Z
A. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

B. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
!0
Z
C.
f (x)dx = f (x).
D. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
n−1
Câu 76. Tính lim 2
n +2
A. 0.
B. 2.


C. 1.

D. 3.
Trang 6/10 Mã đề 1


Câu 77. Dãy! số nào có giới hạn bằng 0?
n
6
n3 − 3n
A. un =
.
B. un =
.
5
n+1

!n
−2
C. un =
.
3

D. un = n2 − 4n.

Câu 78. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. Cả ba câu trên đều sai.
B. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
C. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.

D. F(x) = G(x) trên khoảng (a; b).
Câu 79. [1-c] Giá trị của biểu thức
A. 4.

log7 16
log7 15 − log7

B. −4.

15
30

bằng
C. 2.

D. −2.

Câu 80. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 9 mặt.
C. 6 mặt.
Câu 81. Dãy số nào sau đây có giới hạn khác 0?
n+1
1
A.
.
B. .
n
n


D. 4 mặt.

1
C. √ .
n

D.

sin n
.
n

x−1 y z+1
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x − y + 2z − 1 = 0.
B. 10x − 7y + 13z + 3 = 0.
C. 2x + y − z = 0.
D. −x + 6y + 4z + 5 = 0.

Câu 82. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình

Câu 83. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 6.
B. −6.

C. 5.
2

Câu 84.
Z Các khẳng định nào sau
Z đây là sai?
A.
Z
C.

f (x)dx = F(x) +C ⇒
!0
f (x)dx = f (x).

f (u)dx = F(u) +C. B.

Z
Z

D.

k f (x)dx = k

D. −5.
Z

f (x)dx, k là hằng số.
Z
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.



Câu 85. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. Vô số.
C. 62.
D. 63.
log2 240 log2 15
Câu 86. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. 1.
B. 3.
C. −8.
D. 4.
Câu 87. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (0; −2).
B. (1; −3).
C. (2; 2).
D. (−1; −7).
t
9
Câu 88. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 0.
B. 1.

C. 2.
D. Vô số.
Câu 89. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = 0.
B. x = −8.
C. x = −5.

D. x = −2.

Câu 90. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai mặt.
B. Năm mặt.
C. Bốn mặt.

D. Ba mặt.
Trang 7/10 Mã đề 1


Câu 91. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. −1.
B. 2.
C. 1.

D. 6.

Câu 92. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lập phương.
B. Khối tứ diện.
C. Khối lăng trụ tam giác.
D. Khối bát diện đều.

Câu 93. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. [6, 5; +∞).
C. (−∞; 6, 5).
D. (4; 6, 5].
!
1
1
1
+ ··· +
Câu 94. [3-1131d] Tính lim +
1 1+2
1 + 2 + ··· + n
5
3
A. 2.
B. .
C. +∞.
D. .
2
2
Câu 95. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.

B. Câu (II) sai.


C. Khơng có câu nào D. Câu (I) sai.
sai.

Câu 96. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 64.
C. 62.
D. Vơ số.


Câu 97. Tìm

√ giá trị lớn nhất của hàm số y = x + 3 + 6√− x
A. 2 + 3.
B. 3.
C. 2 3.
D. 3 2.
Câu 98. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất của hàm số. Khi đó tổng

√M + m

A. 16.
B. 8 3.
C. 8 2.
D. 7 3.
1
Câu 99. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3


một đoạn có độ dài bằng 24.
A. m = 4.
B. m = −3.
C. m = −3, m = 4.
D. −3 ≤ m ≤ 4.


4n2 + 1 − n + 2
Câu 100. Tính lim
bằng
2n − 3
3
A. 2.
B. +∞.
C. .
D. 1.
2
Câu 101. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.
C. Khối bát diện đều. D. Khối lập phương.
Câu 102. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −7.
B. −5.
C. Không tồn tại.

D. −3.

Câu 103. Giá trị của lim (3x2 − 2x + 1)

x→1
A. 2.
B. +∞.

C. 3.

D. 1.

Câu 104. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
C. f (x) có giá trị nhỏ nhất trên K.

B. f (x) xác định trên K.
D. f (x) có giá trị lớn nhất trên K.
Trang 8/10 Mã đề 1


Câu 105. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 1.
B. 0.

D. +∞.

C. 2.

3
2
Câu 106. Giá
√ trị cực đại của hàm số√y = x − 3x − 3x + 2 √

A. −3 − 4 2.
B. 3 + 4 2.
C. 3 − 4 2.


D. −3 + 4 2.

Câu 107. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 + 2e
1 − 2e
1 − 2e
.
B. m =
.
C. m =
.
D. m =
.
A. m =
4e + 2
4 − 2e
4e + 2
4 − 2e
Câu 108. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là −4.
B. Phần thực là 4, phần ảo là −1.
C. Phần thực là 4, phần ảo là 1.
D. Phần thực là −1, phần ảo là 4.
Câu 109. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng

A. 4.
B. −4.
C. 2.

D. −2.

Câu 110. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các
45◦ . Tính

√ thể tích của khối chóp 3S .ABC theo a
a
a3 5
a3 15
.
B.
.
C.
.
A.
5
3
25
Câu 111. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥
cách giữa
√ hai đường thẳng BD và√S C bằng

a 6
a 6
a 6
A.

.
B.
.
C.
.
2
3
6
!4x
!2−x
2
3
Câu 112. Tập các số x thỏa mãn


3 #
2
"
!
"
!
2
2
2
A.
; +∞ .
B. −∞; .
C. − ; +∞ .
5
3

3

mặt bên hợp với đáy một góc

a3 15
D.
.
25
(ABCD) và S A = a. Khoảng

D. a 6.

#
2
D. −∞; .
5

Câu 113. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P hoặc d ⊥ P.
B. d nằm trên P.
C. d song song với (P).
D. d ⊥ P.
Câu 114. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [1; 2].
B. (1; 2).
C. [−1; 2).
cos n + sin n
Câu 115. Tính lim
n2 + 1
A. −∞.

B. +∞.
C. 1.

D. (−∞; +∞).
D. 0.

Câu 116. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ là
√ Thể tích khối chóp S 3.ABC


3
a 2
a3 3
a3 3
a 3
A.
.
B.
.
C.
.
D.
.
12
12
4
6


Câu 117. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới
" đây?
!
5
5
A. (1; 2).
B.
;3 .
C. 2; .
D. [3; 4).
2
2
2

2

Câu 118. [3-c] Giá trị nhỏ nhất√và giá trị lớn nhất của hàm số √
f (x) = 2sin x + 2cos x √
lần lượt là
A. 2 và 3.
B. 2 và 3.
C. 2 và 2 2.
D. 2 2 và 3.
Câu 119. Cho hình chóp S .ABCD có√đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A = a 5. Thể tích khối chóp √
S .ABCD là

3
3

3
4a
2a
4a 3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Trang 9/10 Mã đề 1


x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 2.
C. x = 0.
D. x = 1.
2
1−n
Câu 121. [1] Tính lim 2
bằng?

2n + 1
1
1
1
C. − .
D. .
A. 0.
B. .
3
2
2
2
Câu 122. [1224d] Tìm tham số thực m để phương trình log3 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m > .
C. m ≤ .
D. m < .
4
4
4
4
2,4
Câu 123. [1-c] Giá trị của biểu thức 3 log0,1 10 bằng
A. 72.
B. −7, 2.
C. 0, 8.

D. 7, 2.
Câu 120. Hàm số y =
A. x = 3.

Câu 124. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
0 0
(AB0C) và
√ (A C D) bằng



2a 3
a 3
a 3
A.
.
B.
.
C. a 3.
D.
.
2
3
2
Câu 125. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 46cm3 .
B. 27cm3 .
C. 72cm3 .
D. 64cm3 .

2n − 3
bằng
Câu 126. Tính lim 2
2n + 3n + 1
A. 0.
B. +∞.
C. 1.
D. −∞.
Câu 127. Khối đa diện đều loại {3; 4} có số đỉnh
A. 4.
B. 10.

C. 6.

D. 8.



x = 1 + 3t




Câu 128. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi




z = 1

qua điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương


 trình là









x
=
1
+
7t
x = 1 + 3t
x
=
−1
+
2t
x
=
−1
+
2t

















.
D. 
A. 
y = −10 + 11t . C. 
y=1+t
y = 1 + 4t .
y = −10 + 11t . B. 

















z = 1 + 5t
z = 1 − 5t
z = −6 − 5t
z = 6 − 5t
Câu 129. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
B. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
0 0 0 0
Câu 130.
a. Khoảng cách từ C đến √
AC 0 bằng
√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh √
a 6
a 3
a 6
a 6
A.
.

B.
.
C.
.
D.
.
3
2
7
2

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
D

1.

2. A

C

3.

4.


5.

B

6. A

7.

B

8.

9. A

C

10. A
D

11.
13.

B

12.

B

C


14. A

15. A

16. A

17.

18. A

C

19.

D

20. A

21.

D

22.

D

23.

C


24.

D

25.

C

26.

D

27. A

28.

29.

30.

C

31. A

D

32.

33.


D

34.

35.

D

36. A

37.

C

38.

39.

C

40. A

41. A

42.

43.

C

B
D
B

44.

C

45. A
47.

B

B

D

46.

B

48.

B

49. A

50.

D


51. A

52.

D

53.
55.

B

56.

B

57.
59.

54.

C

D

58. A

C
B


60. A

61.

D

62.

D

63.

D

64.

D

65.

D

66.

C

68.

C


67.

B
1


69.
71.

70.

C
B

72.

73. A
75.

78.

C
B

81. A

82.

B


83.

84. A

C
D
C

85.

86.

C

87. A

88.

C

89.
D

90.
B

94. A

B


91.

D

93.

D

95.

C
D

97.

C

96.
98. A

99.

100.

D

102.

C


103. A
105.

106.

D

D

109.

110.

D

111.

C

114.

C

113. A
115.

D

116. A


117.

118.

D

119. A

120.

D

121.

122.

B

107. A

B

112.

C

101. A

104. A


124.

C

76. A

B

79.

108.

B

74.

77.

92.

C

C
B

C
B

125.


B

127.

128. A

129. A

2

B

123.

126. A
130. A

D

C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×