Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg 4 (699)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (151.24 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?
A. 2n2 lần.
B. 2n3 lần.
C. n3 lần.
D. n3 lần.
Câu 2. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
C.
.
D. 5.
A. 7.
B. .
2
2
12 + 22 + · · · + n2
Câu 3. [3-1133d] Tính lim
n3
2
1
A. .
B. .


C. 0.
D. +∞.
3
3
Câu 4. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm
3
dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6 giây
2
cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 27 m.
B. 25 m.
C. 387 m.
D. 1587 m.
d = 60◦ . Đường chéo
Câu 5. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
0
0 0
0 0

BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0





a3 6
2a3 6
4a3 6
.
B.

.
C.
.
D. a3 6.
A.
3
3
3
√3
Câu 6. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1
B. − .
C. 3.
D. −3.
A. .
3
3
1
Câu 7. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. −3.
B. .
C. − .
D. 3.
3
3

Câu 8. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
đến đường√thẳng BD0 bằng



abc b2 + c2
c a2 + b2
b a2 + c2
a b2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
ln2 x
m
Câu 9. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 22.
B. S = 135.

C. S = 32.
D. S = 24.
Câu 10. [2]√Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8
A. m = ± 2.
B. m = ± 3.
C. m = ±1.
D. m = ±3.
Câu 11. Cho hình chóp S .ABCD có đáy ABCD là hình thang vuông tại A và D; AD = CD = a; AB = 2a;
tam giác S AB đều và nằm trong mặt
Thể tích khối chóp
√ phẳng vng góc với 3(ABCD).

√ S .ABCD là
3
3

a 2
a 3
a 3
A. a3 3.
B.
.
C.
.
D.
.
2
2
4


Câu 12. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là


πa3 3
πa3 3
πa3 3
πa3 6
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
2
3
6
Trang 1/10 Mã đề 1


Câu 13. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 1 nghiệm.
B. 2 nghiệm.
C. Vô nghiệm.


D. 3 nghiệm.

Câu 14. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
! của A lên BC là
!
8
7
5
; 0; 0 .
C.
; 0; 0 .
D.
; 0; 0 .
A. (2; 0; 0).
B.
3
3
3
Câu 15. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Tăng lên n lần.
B. Khơng thay đổi.
C. Giảm đi n lần.
D. Tăng lên (n − 1) lần.
Câu 16. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 46cm3 .
B. 27cm3 .
C. 72cm3 .

D. 64cm3 .
Câu 17. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
23
9
13
5
B. −
.
C.
.
D.
.
A. − .
16
100
25
100
Câu 18. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 0.
B. 1.
C. e2016 .
D. 22016 .
Câu 19. Khối đa diện đều loại {3; 3} có số mặt
A. 2.
B. 3.

C. 4.


Câu 20. Khối đa diện đều loại {3; 5} có số cạnh
A. 20.
B. 12.

C. 8.

D. 5.

D. 30.
tan x + m
Câu 21. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (1; +∞).
B. (−∞; −1) ∪ (1; +∞). C. [0; +∞).
D. (−∞; 0] ∪ (1; +∞).
Câu 22. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. Vô nghiệm.
C. 2.

D. 3.

Câu 23. Khối đa diện đều loại {5; 3} có số mặt
A. 12.
B. 30.


D. 20.

C. 8.

Câu 24. Khối đa diện đều loại {3; 3} có số cạnh
A. 4.
B. 8.

C. 5.
D. 6.
p
ln x
1
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
Câu 25. Gọi F(x) là một nguyên hàm của hàm y =
x
3
1
8
1
8
A. .
B. .
C. .
D. .
9
9
3
3
Câu 26. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O

đến (S AB) bằng




a 6
A. a 3.
B.
.
C. a 6.
D. 2a 6.
2
Câu 27. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tam giác và một hình chóp tứ giác.
B. Hai hình chóp tứ giác.
C. Một hình chóp tứ giác và một hình chóp ngũ giác.
D. Hai hình chóp tam giác.
Trang 2/10 Mã đề 1


Câu 28. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 29. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ tứ giác đều là hình lập phương.
C. Hình lăng trụ đứng là hình lăng trụ đều.

D. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
Câu 30. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. .
B. 6.
C. .
D. 9.
2
2
Câu 31.√Biểu thức nào sau đây √
khơng có nghĩa
−3
0
A. (− 2) .
B.
−1.
C. (−1)−1 .
D. 0−1 .
x+2
Câu 32. Tính lim
bằng?
x→2
x
A. 2.
B. 0.
C. 1.
D. 3.
!

1
1
1
+ ··· +
Câu 33. [3-1131d] Tính lim +
1 1+2
1 + 2 + ··· + n
3
5
A. .
B. 2.
C. .
D. +∞.
2
2
Câu 34. Phát biểu nào sau đây là sai?
1
1
A. lim = 0.
B. lim k = 0.
n
n
C. lim qn = 0 (|q| > 1).
D. lim un = c (un = c là hằng số).
Câu 35. Khối đa diện đều loại {3; 5} có số mặt
A. 20.
B. 12.

C. 8.


D. 30.

C. 1.

D. 2.

Câu 36. Giá trị của lim (3x2 − 2x + 1)
A. +∞.

x→1

B. 3.

Câu 37. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.
B. 0, 4.
C. 0, 5.
D. 0, 2.
un
Câu 38. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. −∞.
B. +∞.
C. 1.
D. 0.
Câu 39. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun √
z.




5 13
A.
.
B. 2.
C. 2 13.
D. 26.
13
Câu 40. Khối đa diện đều loại {3; 4} có số cạnh
A. 10.
B. 12.
C. 8.
D. 6.
Câu 41. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
C. Số cạnh của khối chóp bằng số mặt của khối chóp.
D. Số đỉnh của khối chóp bằng số mặt của khối chóp.
Trang 3/10 Mã đề 1


Câu 42. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√M + m
√ của hàm số. Khi đó tổng

A. 8 3.
B. 8 2.
C. 16.

D. 7 3.
Câu 43. Khối đa diện đều loại {3; 4} có số mặt
A. 8.
B. 10.

C. 6.

D. 12.

Câu 44. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD
√ là
3
10a 3
.
D. 20a3 .
A. 40a3 .
B. 10a3 .
C.
3
Câu 45. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC theo a


a3 5
a3
a3 15
a3 15
A.
.

B.
.
C.
.
D.
.
25
3
5
25
Câu 46. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = −21.
C. P = −10.
D. P = 21.
!x
1

Câu 47. [2] Tổng các nghiệm của phương trình 31−x = 2 +
9
A. − log3 2.
B. 1 − log2 3.
C. − log2 3.
D. log2 3.
Câu 48. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối lập phương.

D. Khối tứ diện đều.
Z 1

6
2
3
Câu 49. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
. Tính
f (x)dx.
0
3x + 1
A. 2.

B. 4.

C. Khối bát diện đều.

C. −1.

D. 6.
 π π
3
Câu 50. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 1.
B. 3.
C. −1.
D. 7.
1
Câu 51. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; 3).
B. (−∞; 3).

C. (1; +∞).
D. (−∞; 1) và (3; +∞).
d = 30◦ , biết S BC là tam giác đều
Câu 52. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
9
16
13
26

Câu 53. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √



3
a 6
a 2
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
6
6
36
18
Câu 54. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (−1; −7).
B. (0; −2).
C. (1; −3).
Câu 55. Khối đa diện đều loại {4; 3} có số đỉnh
A. 6.
B. 10.


4n2 + 1 − n + 2
Câu 56. Tính lim
bằng

2n − 3
3
A. .
B. 1.
2

D. (2; 2).

C. 4.

D. 8.

C. +∞.

D. 2.
Trang 4/10 Mã đề 1


Câu 57. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5; 2}.
B. {3}.
C. {2}.
D. {5}.
Câu 58. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 23.
B. 22.
C. 24.
D. 21.

Câu 59. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vơ nghiệm.
B. 1.
C. 2.
D. 3.
Câu 60. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m = 0.
B. m , 0.
C. m < 0.

D. m > 0.
x+2
đồng biến trên khoảng
Câu 61. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x + 5m
(−∞; −10)?
A. 3.
B. 1.
C. Vô số.
D. 2.
Câu 62. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B. a3 .
C.

.
D.
.
6
24
12
Câu 63. Khối đa diện đều loại {5; 3} có số đỉnh
A. 12.
B. 20.
Câu 64. Phát biểu nào sau đây là sai?
1
A. lim √ = 0.
n
1
C. lim k = 0 với k > 1.
n

C. 30.

D. 8.

B. lim un = c (Với un = c là hằng số).
D. lim qn = 1 với |q| > 1.

Câu 65. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng



2a 3

a 3
a 3
.
B. a 3.
C.
.
D.
.
A.
3
2
2
Câu 66. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 17 tháng.
B. 18 tháng.
C. 15 tháng.
D. 16 tháng.
Câu 67. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2

3
−5
3
−2
−1
x y−2 z−3
x y z−1
A. =
=
.
B. = =
.
2
3
−1
1 1
1
x−2 y−2 z−3
x−2 y+2 z−3
C.
=
=
.
D.
=
=
.
2
3
4

2
2
2
1
Câu 68. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.
A. −3 ≤ m ≤ 4.
B. m = −3, m = 4.
C. m = −3.
D. m = 4.
Trang 5/10 Mã đề 1


Câu 69. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 70. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là

3
3
3
3
4a 3

8a 3
a 3
8a 3
.
B.
.
C.
.
D.
.
A.
9
9
3
9
Câu 71.
√ của |z|
√ [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất
A. 3.
B. 2.
C. 1.
D. 5.
!
1
1
1
Câu 72. Tính lim
+
+ ··· +
1.2 2.3

n(n + 1)
3
B. 1.
C. 2.
D. 0.
A. .
2
Câu 73. Khối đa diện đều loại {3; 5} có số đỉnh
A. 30.
B. 8.
C. 20.
D. 12.
2

2

Câu 74.
và giá trị lớn nhất của hàm số f (x) = 2sin x + 2cos x lần lượt
√ [3-c] Giá trị nhỏ nhất √
√ là
A. 2 2 và 3.
B. 2 và 3.
C. 2 và 3.
D. 2 và 2 2.
Câu 75. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 3.
B. 2.
C. 5.

D. 1.


Câu 76. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối lập phương.

D. Khối tứ diện đều.

C. Khối bát diện đều.

Câu 77.
đề nào sau đây sai?
Z [1233d-2] Mệnh
Z
A.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
B.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
C.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
D.
[ f (x) + g(x)]dx =

f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
1

Câu 78. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R \ {1}.
B. D = (1; +∞).
C. D = R.

D. D = (−∞; 1).

0

Câu 79. Cho hai đường thẳng d và d cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có một.
B. Khơng có.
C. Có hai.
D. Có vơ số.
Câu 80. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a
a 3
A. .
B. .
C. a.
D.
.
3

2
2
Câu 81.
Z Cho hàm sốZf (x), g(x) liên tục trên R. Trong cácZmệnh đề sau, mệnh
Z đề nàoZsai?
k f (x)dx = f

A.
Z
C.

f (x)dx, k ∈ R, k , 0.
Z
Z
( f (x) − g(x))dx =
f (x)dx − g(x)dx.

n−1
Câu 82. Tính lim 2
n +2
A. 3.
B. 1.

f (x)g(x)dx =

B.
Z
D.

C. 2.


f (x)dx g(x)dx.
Z
Z
( f (x) + g(x))dx =
f (x)dx + g(x)dx.

D. 0.
Trang 6/10 Mã đề 1


Câu 83. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (II) đúng.

B. Cả hai câu trên đúng. C. Chỉ có (I) đúng.

D. Cả hai câu trên sai.

Câu 84. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một mơn nằm cạnh nhau là

1
9
2
1
B.
.
C. .
D.
.
A. .
5
10
5
10
Câu 85. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n2 lần.
B. n3 lần.
C. 3n3 lần.
D. n lần.
Câu 86. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp
√ là√
A. 8, 16, 32.
B. 2, 4, 8.
C. 2 3, 4 3, 38.
D. 6, 12, 24.
Câu 87. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10.
B. 4.


C. 6.

D. 8.

Câu 88. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng




14 3
20 3
B.
.
C. 6 3.
D.
.
A. 8 3.
3
3

x2 + 3x + 5
Câu 89. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. − .
B. 0.

C. .
D. 1.
4
4
2−n
Câu 90. Giá trị của giới hạn lim
bằng
n+1
A. −1.
B. 0.
C. 1.
D. 2.
t
9
Câu 91. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 1.
B. Vô số.
C. 0.
D. 2.
Câu 92. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tứ giác.
B. Hai khối chóp tam giác.
C. Một khối chóp tam giác, một khối chóp tứ giác.
D. Một khối chóp tam giác, một khối chóp ngữ giác.
Câu 93. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Khơng có.

B. Có một hoặc hai.
C. Có hai.
D. Có một.
Câu 94. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; −3).
B. A0 (−3; −3; 3).
C. A0 (−3; 3; 3).
D. A0 (−3; 3; 1).
Trang 7/10 Mã đề 1


4

Câu 95. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 :
7
5
5
A. a 3 .
B. a 8 .
C. a 3 .

√3

a2 bằng

Câu 96. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 4.


B. 2.

Câu 97. Dãy số nào có giới hạn bằng 0?!
n
−2
2
A. un = n − 4n.
B. un =
.
3

2

D. a 3 .
1
3|x−1|

= 3m − 2 có nghiệm duy

C. 3.

D. 1.

n3 − 3n
C. un =
.
n+1

!n
6

D. un =
.
5

Câu 98. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
ab
ab
1
A. √
.
B. 2
.
C. √
.
D. √
.
2
a +b
2 a2 + b2
a2 + b2
a2 + b2
Câu 99. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 1.
B. 2.
C. 3.

D. 0.


Câu 100. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.

D. Khối tứ diện đều.

C. Khối lập phương.

Câu 101. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 6 cạnh, 4 mặt. B. 6 đỉnh, 6 cạnh, 4 mặt. C. 4 đỉnh, 8 cạnh, 4 mặt. D. 3 đỉnh, 3 cạnh, 3 mặt.
Câu 102. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đơi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 11 năm.
C. 13 năm.
D. 10 năm.
mx − 4
Câu 103. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 67.
B. 45.
C. 26.
D. 34.
Câu 104. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. 1.
C. Vô nghiệm.

D. 3.
Câu 105. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa hai đường thẳng S B và√AD bằng



a 2
a 2
A. a 2.
B.
.
C.
.
D. a 3.
2
3
Câu 106. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 107. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 7, 2.
B. 72.
C. 0, 8.

D. −7, 2.

Câu 108. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; −1) và (0; +∞). B. (−∞; 0) và (1; +∞). C. (−1; 0).

D. (0; 1).
Câu 109. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−1; 1).
B. (1; +∞).
C. (−∞; −1).

D. (−∞; 1).

Câu 110. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số đồng biến trên khoảng (1; 2).
B. Hàm số nghịch biến trên khoảng (1; +∞).
C. Hàm số nghịch biến trên khoảng (−∞; 0).
D. Hàm số nghịch biến trên khoảng (0; 1).
Trang 8/10 Mã đề 1


Câu 111.
Z 0 Trong các khẳng định sau, khẳng định nào sai?
u (x)
dx = log |u(x)| + C.
A.
u(x)
B. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
C. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
Câu 112. Khối đa diện đều loại {4; 3} có số cạnh
A. 10.
B. 30.
C. 12.

D. 20.
log 2x
Câu 113. [1229d] Đạo hàm của hàm số y =

x2
1 − 4 ln 2x
1 − 2 log 2x
1
1 − 2 ln 2x
0
0
0
A. y0 =
.
B.
y
=
.
C.
y
=
.
D.
y
=
.
2x3 ln 10
x3
2x3 ln 10
x3 ln 10

Z 1
Câu 114. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

1
.
2

C. 0.

Câu 115. Thể tích của khối lập phương

cạnh
bằng
a
2

3

2a
2
A. V = a3 2.
B.
.
C. V = 2a3 .
3
Câu 116. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 5 mặt.

C. 6 mặt.
A. 1.

B.

D.

1
.
4


D. 2a3 2.
D. 3 mặt.

Câu 117. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp đôi.
B. Tăng gấp 8 lần.
C. Tăng gấp 6 lần.
D. Tăng gấp 4 lần.
Câu 118. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = x + ln x.
B. y0 = 1 + ln x.

C. y0 = ln x − 1.

D. y0 = 1 − ln x.

Câu 119. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó

Q0 là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số
lượng vi khuẩn đạt 100.000 con?
A. 20.
B. 3, 55.
C. 15, 36.
D. 24.
Câu 120. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 0.
B. Không tồn tại.
C. 9.

D. 13.

Câu 121. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
ab
1
A. √
.
B. √
.
C. 2
.
D. √
.
2
a +b
2 a2 + b2

a2 + b2
a2 + b2




2

2

Câu 122. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x
3
A. m ≥ 0.
B. 0 ≤ m ≤ .
C. 0 ≤ m ≤
4
Câu 123. Giá trị giới hạn lim (x2 − x + 7) bằng?

− 3m + 4 = 0 có nghiệm
9
3
.
D. 0 < m ≤ .
4
4

x→−1

A. 9.


B. 5.

C. 7.

D. 0.

d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥
Câu 124. Cho hình chóp S .ABC có BAC
(ABC). Thể

√ tích khối chóp S .ABC
√là
3
3

a 3
a 3
a3 2
2
A.
.
B.
.
C. 2a 2.
D.
.
12
24
24

Trang 9/10 Mã đề 1


Câu 125. [12210d] Xét các số thực dương x, y thỏa mãn log3

1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ
x + 2y

nhất Pmin của P√ = x + y.



9 11 − 19
18 11 − 29
9 11 + 19
2 11 − 3
A. Pmin =
. B. Pmin =
. C. Pmin =
. D. Pmin =
.
9
21
9
3
Câu 126.
√ Thể tích của tứ diện đều
√cạnh bằng a



3
3
a 2
a 2
a3 2
a3 2
A.
.
B.
.
C.
.
D.
.
2
12
6
4
Câu 127. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Một tứ diện đều và bốn hình chóp tam giác đều.
B. Năm tứ diện đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.
D. Bốn tứ diện đều và một hình chóp tam giác đều.
1
2mx + 1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
Câu 128. Giá trị lớn nhất của hàm số y =
m−x

3
A. 0.
B. 1.
C. −5.
D. −2.
a
1
, với a, b ∈ Z. Giá trị của a + b là
Câu 129. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
4 b ln 3
A. 1.
B. 4.
C. 2.
D. 7.



x=t




Câu 130. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I

thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
A. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
B. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
9
9
2
2
2
2
2
2
D. (x − 3) + (y − 1) + (z − 3) = .
C. (x + 3) + (y + 1) + (z + 3) = .
4
4
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
3.


D

2.

B

B

4. A

5.

D

6. A
D

8.

7.

C

9.

C

10. A

11.


C

12.

C

14.

C

13.

B

15.
17.

16.

C
B

19.

18. A
20.

C


21. A

22. A

23. A

24.

25.

B
D

27.
29. A
31.
33.

B

D

D
D

26.

C

28.


C

30.

C

32. A

B

C

34.

35. A

36.

D

37. A

38.

D

39. A

40.


41.

D

42.

C

44.

43. A
45.

D

47.
49.

B

46.

D
B

48.

C
B


D

50. A

51.

D

52.

53.

D

54.

B

55.

D

56.

B

57.

D


58.

B

60.

B

59.

C
D

61.
63.

B

65. A
67.

B

62.

D

64.


D

66.

D

68.
1

C

B


69.
71.

B

72.

73.
75.

70. A

C
D

74. A

76.

B

77. A

78.

79.
81.

B

82.

83.

B

84.

85.

B

86.
C
D

B


95.

D
D

101. A
D

C

94.

C
D

98.

C

100.

C

106.
D

111. A

112.


113.

D

114.

115.

D

116. A

B

119.

B

108.
110.

118.

C
D
C
B
B


120. A

C
B

122.

B

124.

123. A
D

126.

127. A
129.

C

92.

109. A

125.

D

104. A


B

107.

121.

B

102. A

103.

117.

D

96.

B

99.

105.

C

90. A

91.


97.

B

88.

89. A
93.

C

80.

C

87.

B

D
B

128. A
D

130.

2


B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×