Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg 6 (211)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (154.94 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

1
Câu 1. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m−2 có nghiệm duy nhất?
3
A. 2.
B. 4.
C. 3.
D. 1.
!
x+1
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
Câu 2. [3] Cho hàm số f (x) = ln 2017 − ln
x
2016
2017
4035
A. 2017.
B.
.
C.
.
D.
.


2017
2018
2018
Câu 3.
!
Z
Z Các khẳng định
Z nào sau đây là sai?
0

Z
C.

f (x)dx = f (x).
f (x)dx, k là hằng số.
B.
Z
Z
Z
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C. D.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.

k f (x)dx = k

A.

x2 − 12x + 35
Câu 4. Tính lim

x→5
25 − 5x
2
2
A. .
B. −∞.
C. − .
D. +∞.
5
5
Câu 5. Trong các khẳng định sau, khẳng định nào sai?
A. Cả ba đáp án trên.

B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
D. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
Câu 6. [3-1132d] Cho dãy số (un ) với un =
1
A. lim un = .
2
C. lim un = 1.

1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
n2 + 1
B. lim un = 0.

D. Dãy số un khơng có giới hạn khi n → +∞.
q
2

Câu 7. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 1].
C. m ∈ [0; 4].
D. m ∈ [0; 2].
Câu 8. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
A.
.
B. a 6.
C.
.
D.
.
3
6
2
Câu 9. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (0; 2).
C. (2; +∞).

D. R.
Câu 10. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P hoặc d ⊥ P.
B. d song song với (P).
C. d nằm trên P.
D. d ⊥ P.
Câu 11. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm hình chóp tam giác đều, khơng có tứ diện đều.
B. Năm tứ diện đều.
Trang 1/10 Mã đề 1


C. Bốn tứ diện đều và một hình chóp tam giác đều.
D. Một tứ diện đều và bốn hình chóp tam giác đều.


Câu 12. Phần thực√và phần ảo của số √
phức z = 2 − 1 − 3i lần lượt √l

A. Phần thực là 2, √
phần ảo là 1 − √
3.
B. Phần thực là √2 − 1, phần ảo là −√ 3.
C. Phần thực là 1 − 2, phần ảo là − 3.
D. Phần thực là 2 − 1, phần ảo là 3.
Câu 13. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1

1
B. m ≤ .
C. m < .
D. m > .
A. m ≥ .
4
4
4
4
0
Câu 14. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 12.
B. 10.
C. 4.
D. 11.
Câu 15. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m ≥ 3.
C. m ≤ 3.
D. m > 3.
Câu 16. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 4}.
B. {3; 5}.
C. {4; 3}.

D. {5; 3}.

Câu 17. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ

0 0
ABC.A0 B
C là


3
a3
a
3
a3 3
.
B.
.
C. a3 .
D.
.
A.
2
3
6
Câu 18. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 11 năm.
C. 10 năm.
D. 13 năm.
!
1

1
1
+ ··· +
Câu 19. [3-1131d] Tính lim +
1 1+2
1 + 2 + ··· + n
5
3
A. 2.
B. .
C. +∞.
D. .
2
2
Câu 20. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 5.
C. 8.
D. 4.
Câu 21. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 22. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.

C. Khối 20 mặt đều.


D. Khối bát diện đều.

Câu 23. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.

C. Khối lập phương.

D. Khối bát diện đều.

Câu 24. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 2.
B. y(−2) = 6.
C. y(−2) = −18.
D. y(−2) = 22.
2

Câu 25. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 3.
B. 2.
C. 5.
2n + 1
Câu 26. Tìm giới hạn lim
n+1
A. 1.
B. 0.
C. 3.

D. 4.

D. 2.
Trang 2/10 Mã đề 1


Câu 27. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tam giác.
B. Một khối chóp tam giác, một khối chóp ngữ giác.
C. Một khối chóp tam giác, một khối chóp tứ giác.
D. Hai khối chóp tứ giác.
Câu 28. Tính lim

x→+∞

A. −3.

x−2
x+3
B. 1.

Câu 29. Giá trị của giới hạn lim
A. −1.

B. 1.

2−n
bằng
n+1

C. 2.


2
D. − .
3

C. 0.

D. 2.

Câu 30. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (1; −3).
B. (0; −2).
C. (2; 2).

D. (−1; −7).

Câu 31. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {1}.
B. D = R.

D. D = R \ {0}.

C. D = (0; +∞).

Câu 32. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≥ 3.
B. −3 ≤ m ≤ 3.
C. m ≤ 3.
D. −2 ≤ m ≤ 2.




x=t




Câu 33. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
A. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
B. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x − 3) + (y + 1) + (z + 3) = .

D. (x − 3) + (y − 1) + (z − 3) = .
4
4
Câu 34. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; −1) và (0; +∞). B. (0; 1).
C. (−∞; 0) và (1; +∞). D. (−1; 0).
Câu 35. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 10.
B. 27.
C. 12.

D. 3.

x−1 y z+1
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x + y − z = 0.
B. −x + 6y + 4z + 5 = 0.
C. 10x − 7y + 13z + 3 = 0.
D. 2x − y + 2z − 1 = 0.

Câu 36. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình

Câu 37. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh
! đề nào dưới đây đúng?

!
1
1
A. Hàm số nghịch biến trên khoảng −∞; .
B. Hàm số đồng biến trên khoảng ; 1 .
3
3
!
1
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng ; 1 .
3
Câu 38. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới
" đây?
!
5
5
A. 2; .
B. [3; 4).
C.
;3 .
D. (1; 2).
2
2


ab.


Trang 3/10 Mã đề 1


Câu 39. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.

B. Câu (I) sai.

C. Khơng có câu nào D. Câu (II) sai.
sai.

Câu 40. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là√
3
3
2a 3
4a3 3
a3
a
.
B.
.
C.
.
D.

.
A.
3
3
3
6
Câu 41. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 3.
C. 2.
D. 1.
Câu 42. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 12 m.
B. 8 m.
C. 16 m.
D. 24 m.
Câu 43. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
B. −2.
C. 2.
A. .
2

1
D. − .
2

Câu 44. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?

A. 0, 5.
B. 0, 4.
C. 0, 3.
D. 0, 2.
[ = 60◦ , S A ⊥ (ABCD).
Câu 45. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh S C là a. Thể tích khối√chóp S .ABCD là

3
3

a
a
2
2
a3 3
.
B. a3 3.
C.
.
D.
.
A.
6
12
4
Câu 46. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1

A. − .
B. − .
C. − 2 .
e
2e
e
Câu 47. Khối lập phương thuộc loại
A. {4; 3}.
B. {3; 4}.

C. {5; 3}.

D. −e.

D. {3; 3}.

Câu 48. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là


a3 3
a3 3
a3
a3 3
A.
.
B.
.
C.

.
D.
.
12
8
4
4
Câu 49. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
ab
1
1
.
C. √
.
D. √
.
A. 2
.
B. √
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
Câu 50. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −10.
B. P = 10.
C. P = 21.

D. P = −21.
Trang 4/10 Mã đề 1


Câu 51. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.424.000.
B. 102.016.000.
C. 102.423.000.
D. 102.016.000.
Câu 52. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng


a 2
a 2
D. a 2.
.
B.
.
C. 2a 2.
A.
2
4
Câu 53. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019

A. 22016 .
B. 0.
C. e2016 .
D. 1.
Câu 54. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 10.
B. ln 12.
C. ln 4.
D. ln 14.
4x + 1
bằng?
Câu 55. [1] Tính lim
x→−∞ x + 1
A. 2.
B. −1.
C. −4.
D. 4.
Câu 56. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD), S D = a 5. Thể tích khối


√ chóp S .ABCD là
3

a3 6
a3 5
a 15
3
A. a 6.
.

C.
.
D.
.
B.
3
3
3
Câu 57. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 8%.
B. 0, 6%.
C. 0, 5%.
D. 0, 7%.
log 2x
Câu 58. [3-1229d] Đạo hàm của hàm số y =

x2
1 − 2 ln 2x
1 − 4 ln 2x
1
1 − 2 log 2x
A. y0 = 3
.
B. y0 =
.
C. y0 = 3
.
D. y0 =

.
3
x ln 10
2x ln 10
2x ln 10
x3
2

Câu 59. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
1
B. 2 .
C. √ .
A. 3 .
2e
e
2 e
Câu 60. Dãy số nào sau đây có giới hạn là 0?
n2 + n + 1
1 − 2n
.
B.
u
=
.
A. un =
n
5n + n2
(n + 1)2


C. un =

n2 − 2
.
5n − 3n2

D.

2
.
e3

D. un =

n2 − 3n
.
n2

Câu 61. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≥ 0.
B. − < m < 0.
C. m > − .
D. m ≤ 0.
4
4
Câu 62. Khối đa diện đều loại {4; 3} có số cạnh

A. 12.
B. 20.
C. 30.
D. 10.
Câu 63. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 72.
B. 7, 2.
C. 0, 8.

D. −7, 2.

Câu 64. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. 3n3 lần.
B. n lần.
C. n3 lần.
D. n2 lần.
Trang 5/10 Mã đề 1


Câu 65. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 8 năm.
B. 10 năm.
C. 7 năm.
D. 9 năm.
Câu 66. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
B. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
C. Số cạnh của khối chóp bằng số mặt của khối chóp.

D. Số đỉnh của khối chóp bằng số mặt của khối chóp.
Câu 67. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
B. y = log π4 x.
A. y = log √2 x.

C. y = loga x trong đó a = 3 − 2.
D. y = log 14 x.
Câu 68. [1] Tính lim
A. +∞.

x→3

x−3
bằng?
x+3
B. −∞.

D. 1.

Câu 69. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. Vơ số.
C. 63.
D. 64.
Câu 70. [1] Đạo hàm của làm số y = log x là
ln 10
1
.
B. y0 =

.
A. y0 =
x ln 10
x

C. 0.

1
C. y0 = .
x

Câu 71. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối tứ diện đều.

C. Khối bát diện đều.
!x
1
1−x
Câu 72. [2] Tổng các nghiệm của phương trình 3 = 2 +

9
A. log2 3.
B. − log3 2.
C. 1 − log2 3.
Câu 73. Tính lim
A. 2.

n−1
n2 + 2


B. 3.

C. 1.

D.

1
.
10 ln x

D. Khối 12 mặt đều.

D. − log2 3.

D. 0.

1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
B. xy0 = −ey − 1.
C. xy0 = ey − 1.
D. xy0 = −ey + 1.

Câu 74. [3-12217d] Cho hàm số y = ln
A. xy0 = ey + 1.

Câu 75. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy

một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là

3
10a
3
.
A. 20a3 .
B. 40a3 .
C. 10a3 .
D.
3
Câu 76. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy
một góc 60◦ . Thể tích√khối chóp S .ABCD là √


2a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D. a3 3.
3
6
3
Câu 77.

√ Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.
A. 3 3.
B. 8.
C. 27.
D. 9.
Câu 78. Hàm số y =
A. x = 2.

x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 1.

C. x = 0.

D. x = 3.
Trang 6/10 Mã đề 1


Câu 79. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦√. Thể tích khối chóp S .ABCD

√ là
3
3
3
3
8a 3
4a 3

a 3
8a 3
A.
.
B.
.
C.
.
D.
.
3
9
9
9
Câu 80. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 32π.
B. 8π.
C. V = 4π.
D. 16π.
log 2x

Câu 81. [1229d] Đạo hàm của hàm số y =
x2
1 − 2 ln 2x
1 − 4 ln 2x
1 − 2 log 2x
1
A. y0 = 3
.

B. y0 =
.
C. y0 =
.
D. y0 = 3
.
3
3
x ln 10
2x ln 10
x
2x ln 10
Câu 82. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 15, 36.
B. 20.
C. 3, 55.
D. 24.
π
Câu 83. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √
thức T = a + b 3.

B. T = 2.
C. T = 4.
D. T = 3 3 + 1.
A. T = 2 3.

Câu 84. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp đơi.
B. Tăng gấp 8 lần.
C. Tăng gấp 4 lần.
D. Tăng gấp 6 lần.
! x3 −3mx2 +m
1
nghịch biến trên
Câu 85. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
π
khoảng (−∞; +∞)
A. m = 0.
B. m ∈ R.
C. m , 0.
D. m ∈ (0; +∞).
1
Câu 86. [1] Giá trị của biểu thức log √3
bằng
10
1
1
D. .
A. 3.
B. −3.
C. − .
3
3
3
2

Câu 87. Cho hàm số y = x − 3x + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 0.
B. −3.
C. 3.
D. −6.
Câu 88. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 120 cm2 .
C. 1200 cm2 .
D. 160 cm2 .
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 89. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là


3

a3 3
a3 2
a
3
A.
.
B.
.
C. 2a2 2.
D.
.

12
24
24
Câu 90. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối bát diện đều. C. Khối tứ diện đều.
D. Khối 12 mặt đều.
12 + 22 + · · · + n2
Câu 91. [3-1133d] Tính lim
n3
2
1
A. .
B. .
C. 0.
3
3
Câu 92. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 3 nghiệm.
B. Vơ nghiệm.
C. 1 nghiệm.

D. +∞.
D. 2 nghiệm.
Trang 7/10 Mã đề 1


Câu 93. Cho I =

Z


3

x


dx =

0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 28.
B. P = 16.

a
a
+ b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
d
d
C. P = 4.

D. P = −2.

Câu 94. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. n3 lần.
C. 2n2 lần.
D. 2n3 lần.
Câu 95. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu

của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
!
! của A lên BC là
5
7
8
A.
; 0; 0 .
B.
; 0; 0 .
C.
; 0; 0 .
D. (2; 0; 0).
3
3
3
Câu 96. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
40
20
20
10
C50
.(3)10
C50
.(3)20
C50
.(3)30

C50
.(3)40
.
B.
.
C.
.
D.
.
A.
450
450
450
450

Câu 97. Thể tích của khối lập phương

cạnh
bằng
a
2

3


2a 2
A. 2a3 2.
B.
.
C. V = 2a3 .

D. V = a3 2.
3
Câu 98. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 6.
B. 8.
C. 4.
D. 3.
log7 16
bằng
Câu 99. [1-c] Giá trị của biểu thức
log7 15 − log7 15
30
A. −4.
B. −2.
C. 4.
D. 2.
1

Câu 100. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (−∞; 1).
B. D = (1; +∞).
C. D = R.

D. D = R \ {1}.
tan x + m
Câu 101. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π

0; .
4
A. (−∞; −1) ∪ (1; +∞). B. [0; +∞).
C. (1; +∞).
D. (−∞; 0] ∪ (1; +∞).
Câu 102. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = S h.
C. V = S h.
D. V = 3S h.
3
2



x = 1 + 3t




Câu 103. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi




z = 1
qua điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có

phương
 trình là











x
=
−1
+
2t
x = −1 + 2t
x
=
1
+
7t
x
=
1
+
3t

















.
B. 
C. 
A. 
y = 1 + 4t .
y = −10 + 11t . D. 
y = −10 + 11t .
y=1+t

















z = −6 − 5t
z = 6 − 5t
z = 1 + 5t
z = 1 − 5t
Trang 8/10 Mã đề 1


Câu 104. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4




a3 3
a3 3

a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
6
36
12
24
Z 1
Câu 105. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

1
1
A. .
B. .
4
2
Câu 106. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối lập phương.

C. 1.


D. 0.

C. Khối 12 mặt đều.

D. Khối bát diện đều.

Câu 107. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
Câu 108. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc
45◦ . Tính thể tích của khối chóp S√
.ABC theo a


3
3
a
a 15
a3 15
a3 5
A.
.
B.
.
C.
.
D.

.
3
25
5
25
x−1
Câu 109. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
√ đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB
√ có độ dài bằng

A. 6.
B. 2.
C. 2 2.
D. 2 3.
Câu 110. Khối đa diện đều loại {3; 3} có số mặt
A. 4.
B. 2.

C. 3.

D. 5.

Câu 111. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
.
D. −7.
A. −2.

B. −4.
C.
27
Câu 112. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 3
a3 5
a3 5
a3 5
A.
.
B.
.
C.
.
D.
.
12
12
4
6
Câu 113. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Khơng có.
B. Có vơ số.
C. Có một.
D. Có hai.
Câu 114. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞


A. lim [ f (x) + g(x)] = a + b.
x→+∞

C. lim [ f (x) − g(x)] = a − b.
x→+∞

x→+∞

B. lim [ f (x)g(x)] = ab.
x→+∞
f (x) a
D. lim
= .
x→+∞ g(x)
b

d = 60◦ . Đường chéo
Câu 115. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
0
0 0
0 0

BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0





4a3 6

2a3 6
a3 6
3
A.
.
B. a 6.
C.
.
D.
.
3
3
3
Trang 9/10 Mã đề 1


Câu 116. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 3.
C. 2.
D. 1.
Câu 117. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 10 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
!
!
!
x

1
2
2016
4
. Tính tổng T = f
+f
+ ··· + f
Câu 118. [3] Cho hàm số f (x) = x
4 +2
2017
2017
2017
2016
A. T = 2017.
B. T = 2016.
C. T =
.
D. T = 1008.
2017
x+2
Câu 119. Tính lim
bằng?
x→2
x
A. 2.
B. 3.
C. 1.
D. 0.
Câu 120. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1

1
1
1
B. m < .
C. m ≥ .
D. m ≤ .
A. m > .
4
4
4
4
t
9
Câu 121. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao
9 + m2
cho f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 2.
B. 0.
C. Vô số.
D. 1.
Câu 122. Phát biểu nào sau đây là sai?
A. lim un = c (un = c là hằng số).
B. lim qn = 0 (|q| > 1).
1
1
D. lim k = 0.
C. lim = 0.
n
n

Câu 123. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 124. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (−1; 1).
C. (−∞; −1).

D. (1; +∞).

Câu 125. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (−∞; 6, 5).
B. [6, 5; +∞).
C. (4; 6, 5].
D. (4; +∞).
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 126. [3-12217d] Cho hàm số y = ln
x+1
0
y
0
y
A. xy = −e − 1.
B. xy = e + 1.
C. xy0 = −ey + 1.
D. xy0 = ey − 1.
Câu 127. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?

A. 5 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 5 mặt. D. 6 đỉnh, 6 cạnh, 6 mặt.

x2 + 3x + 5
Câu 128. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. − .
B. 0.
C. .
D. 1.
4
4
Câu 129. Khối đa diện đều loại {3; 5} có số đỉnh
A. 20.
B. 8.
C. 12.
D. 30.
Câu 130. Dãy
!n số nào có giới hạn bằng 0?
!n
6
−2
A. un =
.
B. un =
.
5
3


C. un = n2 − 4n.

D. un =

n3 − 3n
.
n+1

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D

3.
5.

C

4. A

B


6. A

7. A
9.

C

8.
10. A

B
D

11.

12.

13.

B

14. A

15.

B

16.

17. A


18. A

19. A

20. A

21. A

22.

23.

D

24.

25.

D

26.

27.

C

29. A
31.


C

2.

B

33.

B
B

B
C
D

28.

B

30.

B

32.

B

34.

C


D

35.

D

36.

C

37.

D

38.

C

39.

C

40.

C

41.

C


42.

C

44.

C

43.

B

45.

D

47. A
49.

B

48.

B

50.

B


51. A
53.

46.

52. A
54.

B

55.

D

56.

57.

D

58. A

59.
61.

D
D
C

60. A


B

62. A

C

63.

D

64.

65.

D

66.

67. A

68.
1

C
D
C


69. A


70. A

71. A

72.
D

73.

D

74.

C

75. A

76.

C

77. A

78.

79.

D


81. A

82. A
84.

83.
C

88. A
C

90.
92.
94. A

B

89.

B

93.

C

95.

C

97. A


C

98.

87.
91. A
D

96.

C

85. A

B

86.

100.

B

D

99. A

B

101.


C

103.

102. A
104.

105.

C

D
B

106.

B

107.

D

108.

B

109.

D


110. A
112.

111. A
113.

B

114.

D

116.

115.
117.

C

118.

D

119. A

120.

D


121. A

D
B
C

122.

B

123.

C

124.

B

125.

C

127.

C

129.

C


126.

D

128. A
130.

B

2



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×