Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg 6 (543)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (156.21 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 9.

B. 7.

Câu 2. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.

C. 0.

D. 5.

C. Khối bát diện đều.

D. Khối 20 mặt đều.

Câu 3. Khối đa diện đều loại {5; 3} có số cạnh
A. 20.
B. 8.


C. 12.
D. 30.
x−1
Câu 4. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
AB có độ dài bằng
√ đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng √

B. 2.
C. 6.
D. 2 3.
A. 2 2.
Câu 5. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

αβ
α β
α+β
α β
B. a = a .a .
C. β = a β .
A. a = (a ) .
D. aα bα = (ab)α .
a
Câu 6. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 10.
B. ln 4.
C. ln 14.

D. ln 12.
Câu 7. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 4.
B. 0, 3.
C. 0, 2.
D. 0, 5.
Câu 8. Mệnh đề nào sau đây sai?
A. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).
B. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

C. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
!0
Z
D.
f (x)dx = f (x).
Câu 9. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim
A. −∞.

B. 1.
x − 5x + 6
x→2
x−2
B. −1.

C. 0.

un

bằng
vn

D. +∞.

2

Câu 10. Tính giới hạn lim
A. 1.

C. 0.

D. 5.

Câu 11. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (0; −2).
B. (−1; −7).
C. (1; −3).
D. (2; 2).
Z 1
Câu 12. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

A. 1.

B.

1
.

4

C.

1
.
2

D. 0.

Câu 13. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là√

a3
a3
2a3 3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
6
3
3
Trang 1/10 Mã đề 1



2

Câu 14. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 3 − log2 3.
B. 1 − log3 2.
C. 1 − log2 3.
D. 2 − log2 3.
 π
Câu 15. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


2 π4
1 π3
3 π6
A.
e .
B. 1.
C. e .
D.
e .
2
2
2
!
3n + 2
2
Câu 16. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim

+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 2.
B. 4.
C. 3.
D. 5.
Câu 17. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 5 mặt.
B. 6 mặt.
C. 4 mặt.

D. 3 mặt.

Câu 18. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD), S D = a 5. Thể tích khối
√ chóp S .ABCD là


3
3
3

a
5
a
6
a
15
B.

A. a3 6.
.
C.
.
D.
.
3
3
3
Câu 19. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối bát diện đều.
B. Khối lập phương.
C. Khối lăng trụ tam giác.
D. Khối tứ diện.
Câu 20. Khối đa diện đều loại {3; 4} có số cạnh
A. 12.
B. 10.

C. 6.

D. 8.

Câu 21. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −2.
C. m = −1.


Câu 22.
Tìm

giá
trị
lớn
nhất
của
hàm
số
y
=
x
+
3
+
6−x


A. 2 3.
B. 3 2.
C. 3.




D. m = −3.
D. 2 +


3.

Câu 23. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm

3
9
3
A. 0 < m ≤ .
B. m ≥ 0.
C. 0 ≤ m ≤ .
D. 0 ≤ m ≤ .
4
4
4
3
2
Câu 24. Hàm số y = x − 3x + 4 đồng biến trên:
A. (0; 2).
B. (−∞; 0) và (2; +∞). C. (0; +∞).
D. (−∞; 2).
2

2

3

Câu 25. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e5 .
B. e2 .
C. e.
D. e3 .
1
Câu 26. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3

A. (−∞; 3).
B. (1; +∞).
C. (1; 3).
D. (−∞; 1) và (3; +∞).
cos n + sin n
Câu 27. Tính lim
n2 + 1
A. 1.
B. −∞.
C. 0.
D. +∞.
Câu 28. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un
B. Nếu lim un
C. Nếu lim un
D. Nếu lim un

!
un
= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
!
un
= a , 0 và lim vn = ±∞ thì lim
= 0.
vn
= +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un

= a > 0 và lim vn = 0 thì lim
= +∞.
vn
Trang 2/10 Mã đề 1


Câu 29. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
A. 16 tháng.
B. 18 tháng.
C. 17 tháng.
D. 15 tháng.
Câu 30. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = (0; +∞).
B. D = R \ {1}.

C. D = R \ {0}.

D. D = R.

Câu 31. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 1.

B. 0.


C. 3.

D. 2.

x+1
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2016
C. 2017.
D.
.
2017
!

Câu 32. [3] Cho hàm số f (x) = ln 2017 − ln

4035
.
2018
9t
Câu 33. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. Vơ số.
B. 0.
C. 1.
D. 2.
A.


2017
.
2018

B.

Câu 34.
Z Cho hàm sốZf (x), g(x) liên tục trên R. Trong cácZmệnh đề sau, mệnh
Z đề nàoZsai?
k f (x)dx = f

A.
Z
C.

f (x)dx, k ∈ R, k , 0.
Z
Z
( f (x) + g(x))dx =
f (x)dx + g(x)dx.

f (x)g(x)dx =

B.
Z
D.

f (x)dx g(x)dx.
Z
Z

( f (x) − g(x))dx =
f (x)dx − g(x)dx.

Câu 35.
bằng 1 là:
√ Thể tích của khối lăng trụ tam giác đều có cạnh √

3
3
3
3
A.
.
B. .
C.
.
D.
.
4
4
12
2
Câu 36. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. .
B. .
C. 9.
D. 6.

2
2
Câu 37. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 0.
B. 1.
C. 2.
D. +∞.
Câu 38. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 − sin 2x.
B. −1 + sin x cos x.
C. −1 + 2 sin 2x.
D. 1 + 2 sin 2x.
1
Câu 39. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 < m < −1.
B. (−∞; −2] ∪ [−1; +∞). C. −2 ≤ m ≤ −1.
D. (−∞; −2) ∪ (−1; +∞).
Câu 40. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
Trang 3/10 Mã đề 1


n−1
Câu 41. Tính lim 2

n +2
A. 0.
B. 3.

C. 1.

D. 2.

Câu 42. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 3 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 27 lần.
D. Tăng gấp 9 lần.
x
x−3 x−2 x−1
+
+
+
và y = |x + 2| − x − m (m là tham
Câu 43. [4-1213d] Cho hai hàm số y =
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2).
B. (2; +∞).
C. (−∞; 2].
D. [2; +∞).

Câu 44. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là 4.
B. Phần thực là 3, phần ảo là −4.
C. Phần thực là −3, phần ảo là −4.
D. Phần thực là 3, phần ảo là 4.
Câu 45. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của

√ hình chóp S .ABCD với
√mặt phẳng (AIC) có diện tích

2
2
2
2
a 2
a 5
11a
a 7
.
B.
.
C.
.
D.
.
A.
8

4
16
32
1
Câu 46. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 2.
B. 4.
C. 1.
D. 3.

Câu 47. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị
" nhỏ! nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới đây?
5
5
A. 2; .
B.
;3 .
C. (1; 2).
D. [3; 4).
2
2
d = 60◦ . Đường chéo
Câu 48. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
0
0 0
0 0


BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0





4a3 6
2a3 6
a3 6
3
A.
.
B. a 6.
.
D.
.
C.
3
3
3
12 + 22 + · · · + n2
Câu 49. [3-1133d] Tính lim
n3
1
2
C. +∞.
D. .
A. 0.
B. .
3

3

2
3
Câu 50. [2] Phương trình log4 (x + 1) + 2 = log √2 4 − x + log8 (4 + x) có tất cả bao nhiêu nghiệm?
A. 1 nghiệm.
B. Vơ nghiệm.
C. 2 nghiệm.
D. 3 nghiệm.
x−3
Câu 51. [1] Tính lim
bằng?
x→3 x + 3
A. +∞.
B. −∞.
C. 0.
D. 1.
tan x + m
Câu 52. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (−∞; −1) ∪ (1; +∞). B. [0; +∞).
C. (1; +∞).
D. (−∞; 0] ∪ (1; +∞).
Câu 53. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.

B. m > 3.
C. m ≥ 3.
D. m < 3.
Trang 4/10 Mã đề 1


d = 30◦ , biết S BC là tam giác đều
Câu 54. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
26
9
13
16



4n2 + 1 − n + 2
Câu 55. Tính lim
bằng
2n − 3
3
A. +∞.
B. 2.
C. 1.
D. .
2
Câu 56. Tính lim
x→1

A. −∞.
Câu 57. Tính lim
A.

3
.
2

x3 − 1
x−1

B. 0.

1
1
1
+

+ ··· +
1.2 2.3
n(n + 1)
B. 0.

C. +∞.

D. 3.

C. 2.

D. 1.

!

Câu 58. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 14 năm.
B. 11 năm.
C. 12 năm.
D. 10 năm.
q
2
Câu 59. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].

B. m ∈ [−1; 0].
C. m ∈ [0; 4].
D. m ∈ [0; 2].



x = 1 + 3t




Câu 60. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là












x
=
−1
+
2t
x
=
1
+
7t
x
=
−1
+
2t
x = 1 + 3t

















A. 
.
C. 
y = −10 + 11t . B. 
y=1+t
y = −10 + 11t . D. 
y = 1 + 4t .
















z = −6 − 5t
z = 1 + 5t
z = 6 − 5t

z = 1 − 5t
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
B. xy0 = −ey − 1.
C. xy0 = −ey + 1.
D. xy0 = ey − 1.

Câu 61. [3-12217d] Cho hàm số y = ln
A. xy0 = ey + 1.

Câu 62. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
100.(1, 01)3
(1, 01)3
A. m =
triệu.
B. m =
triệu.
3
(1, 01)3 − 1
120.(1, 12)3
100.1, 03
C. m =
triệu.

D. m =
triệu.
3
(1, 12)3 − 1
Câu 63. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (−∞; +∞).
B. (1; 2).
C. [−1; 2).

D. [1; 2].
Trang 5/10 Mã đề 1


Câu 64. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có vơ số.
B. Có hai.
C. Có một.
D. Khơng có.
Câu 65. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 66. Tính lim

7n2 − 2n3 + 1
3n3 + 2n2 + 1
B. 1.


7
2
.
D. - .
3
3
Câu 67. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
a
2a
5a
8a
.
B. .
C.
.
D.
.
A.
9
9
9
9
Câu 68. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. Vô nghiệm.
C. 1.
D. 3.
1 − xy

Câu 69. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.



2 11 − 3
9 11 − 19
18 11 − 29
9 11 + 19
. B. Pmin =
.
C. Pmin =
. D. Pmin =
.
A. Pmin =
9
3
9
21

Câu 70. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. Vô số.
C. 62.
D. 64.
A. 0.


C.

Câu 71. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. Vơ nghiệm.
C. 3.
D. 1.
Câu 72. Tính lim
x→5

A. −∞.

x2 − 12x + 35
25 − 5x
2
B. − .
5

C.

2
.
5

D. +∞.


Câu 73. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.

√ tích khối chóp S .ABC3 √


3
a 2
a 6
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
6
36
18
6
Câu 74. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
B. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số nghịch biến trên khoảng (−2; 1).
Câu 75. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 27cm3 .
B. 72cm3 .
C. 46cm3 .

D. 64cm3 .
Câu 76. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.

C. Khối 20 mặt đều.

D. Khối tứ diện đều.

Câu 77. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
Trang 6/10 Mã đề 1


(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 3.

B. 2.

C. 4.

Câu 78. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 1.
B. 2.
C. 5.

D. 1.
D. 3.


Câu 79. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
B. F(x) = G(x) trên khoảng (a; b).
C. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
D. Cả ba câu trên đều sai.
Câu 80. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. −2 + 2 ln 2.
B. 1.
C. 4 − 2 ln 2.
log7 16
bằng
Câu 81. [1-c] Giá trị của biểu thức
log7 15 − log7 15
30
A. −4.
B. 2.
C. 4.
Câu 82. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai cạnh.
B. Bốn cạnh.
C. Ba cạnh.

D. e.

D. −2.
D. Năm cạnh.


Câu 83. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể

tích khối nón đã

√ cho là


πa3 3
πa3 6
πa3 3
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
6
2
3
1
Câu 84. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 0 < m ≤ 1.
C. 0 ≤ m ≤ 1.
D. 2 < m ≤ 3.
2x + 1
Câu 85. Tính giới hạn lim

x→+∞ x + 1
1
B. −1.
C. 1.
D. 2.
A. .
2
Câu 86. Khối đa diện đều loại {4; 3} có số mặt
A. 6.
B. 12.
C. 10.
D. 8.
2−n
Câu 87. Giá trị của giới hạn lim
bằng
n+1
A. −1.
B. 1.
C. 2.
D. 0.
1
Câu 88. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 3.
B. 2.
C. 1.
D. 4.
Câu 89. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình chóp.

B. Hình lăng trụ.
C. Hình tam giác.

Câu 90. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. .
B. −3.
C. − .
3
3

D. Hình lập phương.

D. 3.
Trang 7/10 Mã đề 1


Câu 91. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai mặt.
B. Ba mặt.
C. Năm mặt.

D. Bốn mặt.

Câu 92. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 10 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.

Câu 93. Tính thể tích khối lập phương
biết tổng diện tích tất cả các mặt bằng 18.

A. 8.
B. 3 3.
C. 9.
D. 27.

π
Câu 94. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √
thức T = a + b 3.

A. T = 3 3 + 1.
B. T = 4.
C. T = 2.
D. T = 2 3.
Câu 95. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
A. lim [ f (x) − g(x)] = a − b.
B. lim
= .
x→+∞
x→+∞ g(x)
b
C. lim [ f (x)g(x)] = ab.

D. lim [ f (x) + g(x)] = a + b.
x→+∞

x→+∞

2mx + 1
1
Câu 96. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. −2.
B. 0.
C. −5.
D. 1.
Câu 97. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. Vô nghiệm.
C. 1.

D. 3.
x+3
nghịch biến trên khoảng
Câu 98. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x−m
(0; +∞)?
A. 1.
B. 2.
C. 3.
D. Vô số.

x
x+1
x−2 x−1
+
+
+
và y = |x + 1| − x − m (m là tham
Câu 99. [4-1212d] Cho hai hàm số y =
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−3; +∞).
B. (−∞; −3].
C. (−∞; −3).
D. [−3; +∞).
Câu 100. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB)
√ bằng



a 6
A.
.
B. a 6.
C. a 3.
D. 2a 6.
2

Câu 101. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của
P = xy + x + 2y + 17
A. −12.
B. −15.
C. −5.
D. −9.
2n + 1
Câu 102. Tìm giới hạn lim
n+1
A. 3.
B. 1.
C. 2.
D. 0.
Câu 103. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh
đề nào dưới đây đúng?
!
!
1
1
A. Hàm số nghịch biến trên khoảng −∞; .
B. Hàm số đồng biến trên khoảng ; 1 .
3
3
!
1
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng ; 1 .
3
Câu 104. Hàm số y =
A. x = 1.


x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 2.

C. x = 0.

D. x = 3.
Trang 8/10 Mã đề 1


Câu 105. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A.
.
B. 7.
C. .
D. 5.
2
2
0 0 0 0
Câu 106.
a. Khoảng cách từ C đến √
AC 0 bằng
√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh √
a 6
a 6

a 3
a 6
A.
.
B.
.
C.
.
D.
.
3
2
2
7
Câu 107. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1637
1728
1079
23
.
B.
.
C.
.
D.
.
A.
68
4913

4913
4913
Câu 108. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0)
lần lượt là hình
! chiếu của B, C lên các cạnh AC, AB. Tọa độ hình!chiếu của A lên BC là !
7
8
5
A.
; 0; 0 .
B. (2; 0; 0).
C.
; 0; 0 .
D.
; 0; 0 .
3
3
3
Câu 109. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng 2n.
B. Số mặt của khối chóp bằng số cạnh của khối chóp.
C. Số đỉnh của khối chóp bằng 2n + 1.
D. Số mặt của khối chóp bằng 2n+1.
Câu 110. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là 4.
B. Phần thực là −1, phần ảo là −4.
C. Phần thực là 4, phần ảo là 1.
D. Phần thực là 4, phần ảo là −1.
Câu 111. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa



√ hai đường thẳng BD và S C bằng

a 6
a 6
a 6
.
B. a 6.
.
D.
.
C.
A.
2
6
3
Câu 112. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là

3

a3 3
2a
a3 3
3
A.
D.
.

B.
.
C. a3 3.
.
3
6
3
3
2
x
Câu 113. [2]
√ Tìm m để giá trị lớn nhất của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng 8√
A. m = ± 2.
B. m = ±3.
C. m = ±1.
D. m = ± 3.
Câu 114. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 3.
B. 1.
C. 7.
D. 2.
mx − 4
Câu 115. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 26.
B. 34.
C. 45.
D. 67.
Câu 116. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.

Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 32π.
B. V = 4π.
C. 16π.
D. 8π.
√3
4
Câu 117. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
2
5
7
5
A. a 3 .
B. a 3 .
C. a 3 .
D. a 8 .
Câu 118. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
C. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Trang 9/10 Mã đề 1


Câu 119. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Bốn mặt.
B. Một mặt.
C. Hai mặt.

D. Ba mặt.


Câu 120. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
D. 18.
A. 12.
B. 27.
C.
2
Câu 121. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp ngữ giác.
B. Hai khối chóp tam giác.
C. Hai khối chóp tứ giác.
D. Một khối chóp tam giác, một khối chóp tứ giác.
Câu 122. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. R.
B. (2; +∞).
C. (0; 2).
D. (−∞; 1).
p
ln x
1
Câu 123. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
1
8

8
B. .
C. .
D. .
A. .
3
9
3
9
Câu 124. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
B. 5.
C. 68.
D.
.
A. 34.
17
Câu 125. Khối đa diện đều loại {3; 3} có số mặt
A. 3.
B. 5.
C. 2.
D. 4.
Câu 126. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD


√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng


a 2
a 2
.
B. 2a 2.
.
C. a 2.
D.
A.
4
2
Câu 127. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
2

Câu 128. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 2.
B. 4.
C. 5.
2n + 1
Câu 129. Tính giới hạn lim
3n + 2
1
2

3
A. .
B. .
C. .
2
3
2
Câu 130. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc
Biết rằng√ khoảng cách từ A đến cạnh S C là a. Thể tích khối√chóp S .ABCD là

a3 2
a3 2
A.
.
B. a3 3.
C.
.
12
4

D. 3.

D. 0.
[ = 60◦ , S A ⊥ (ABCD).
BAD

a3 3
D.
.
6


- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
3.

D

5.
7.

C

4.

D
C

8. A
10.

C

11. A


B
C

12.

13.

14.

D

15. A

16.
C

17.
19.
21.

D

6.

B

9.

2.


C

20. A

B
D

25. A
27.

B

18.
D

23.

D

C

29. A

22.

B

24.


B

26.

D

28.

D

30.

D

31.

D

32. A

33.

D

34.

B

35. A


36.

B

37. A

38.

39.

C

40.

41. A

C
B

42.

43.

D

C

44. A

45. A


46.

C

47.

B

48.

B

49.

B

50.

C

51.

C

52.

C

53.


C

54.

C

55.

C

56.

57.
59.

D

58.

D

63. A
65.

B

60.

B


61.

D
C

62.

B

64.

B

66.

B

67. A

68.
1

D
C


69.

B


71. A
73.

C

70.

C

72.

C

74.

C

75. A

76.

B

77. A

78.

B


79.

D

80.

C

81. A

C

82.

83.

D

84.

85.

D

86. A

87. A

D
C


88.
C

89.

90. A

91.

B

92.

93.

B

94.

B

95.

B

96.

B


97.
99.

C

98.
100.

B

101. A
D

105.

C

108.

C

110.
C

D

112. A
114.

113. A


119. A

C

120.

D

122.

D

117. A

B

118.

C

121.

D

123.

D
D


124.

D

125.

126.

D

127. A

130.

C

106. A

B

111.

128.

B

104. A

109. A


115.

C

102.

103.
107.

D

B

129.
C

2

B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×