TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. Khối đa diện đều loại {5; 3} có số cạnh
A. 8.
B. 12.
C. 30.
D. 20.
C. 0.
D. 5.
C. (+∞; −∞).
D. [1; +∞).
Câu 2. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 9.
B. 7.
!2x−1
3
3
≤
5
5
B. [3; +∞).
Câu 3. Tập các số x thỏa mãn
A. (−∞; 1].
!2−x
là
Câu 4. Phát biểu nào sau đây là sai?
1
B. lim √ = 0.
n
1
C. lim un = c (Với un = c là hằng số).
D. lim k = 0 với k > 1.
n
Câu 5. [4-1246d] Trong tất cả các số phức z thỏa mãn |z √
− i| = 1. Tìm giá trị lớn nhất
√ của |z|
D. 5.
A. 2.
B. 1.
C. 3.
A. lim qn = 1 với |q| > 1.
Câu 6. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R.
B. D = (−2; 1).
2
C. D = [2; 1].
D. D = R \ {1; 2}.
Câu 7. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.
√
A. 8.
B. 27.
C. 9.
D. 3 3.
x+3
Câu 8. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. Vô số.
B. 1.
C. 3.
D. 2.
2
2n − 1
Câu 9. Tính lim 6
3n + n4
2
D. 2.
A. 1.
B. 0.
C. .
3
Câu 10. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 6.
B. 4.
C. 3.
D. 8.
√
Câu 11. Thể tích của khối lập phương
√ có cạnh bằng a 2
3
√
√
2a 2
A. V = 2a3 .
B.
.
C. V = a3 2.
D. 2a3 2.
3
Câu 12. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một hoặc hai.
B. Có một.
C. Có hai.
D. Khơng có.
1
Câu 13. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2) ∪ (−1; +∞). B. (−∞; −2] ∪ [−1; +∞). C. −2 < m < −1.
D. −2 ≤ m ≤ −1.
Câu 14. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 2.
C. 1.
D. 3.
Trang 1/10 Mã đề 1
Câu 15. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
.
e
Câu 16. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m ≤ 3.
C. m ≥ 3.
D. m < 3.
A. 3.
B. 2e.
Câu 17. Khối chóp ngũ giác có số cạnh là
A. 11 cạnh.
B. 10 cạnh.
C. 2e + 1.
D.
C. 12 cạnh.
D. 9 cạnh.
Câu 18. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
2
1
1
9
A. .
B.
.
C. .
D.
.
5
10
5
10
Câu 19. Thể tích của khối lăng√trụ tam giác đều có cạnh √
bằng 1 là:
√
3
3
3
3
A. .
B.
.
C.
.
D.
.
4
4
12
2
Câu 20. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.
C. Khối tứ diện đều.
D. Khối 20 mặt đều.
1
Câu 21. Hàm số y = x + có giá trị cực đại là
x
A. −1.
B. −2.
C. 1.
D. 2.
2−n
Câu 22. Giá trị của giới hạn lim
bằng
n+1
A. 1.
B. 0.
C. 2.
D. −1.
x=t
Câu 23. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
y = −1 và hai mặt phẳng (P), (Q)
z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
A. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
B. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x − 3) + (y − 1) + (z − 3) = .
D. (x − 3) + (y + 1) + (z + 3) = .
4
4
3
2
Câu 24. [2D1-3] Tìm giá trị của tham số m để f (x) = −x + 3x + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
B. m ≥ 0.
C. − < m < 0.
D. m ≤ 0.
A. m > − .
4
4
Câu 25. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
√ góc với đáy, S C = a3 3. Thể tích khối chóp S .ABCD là
√
3
3
a 3
a
a
3
A.
.
B.
.
C. a3 .
D.
.
3
3
9
Câu 26. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 21.
B. P = −21.
C. P = −10.
D. P = 10.
Câu 27. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim f (x) = f (a).
B. lim+ f (x) = lim− f (x) = +∞.
x→a
x→a
x→a
C. f (x) có giới hạn hữu hạn khi x → a.
D. lim+ f (x) = lim− f (x) = a.
x→a
Câu 28. Khối đa diện đều loại {3; 5} có số cạnh
A. 8.
B. 20.
C. 30.
x→a
D. 12.
Trang 2/10 Mã đề 1
3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng
√
2a
a 2
a
a
A.
.
B.
.
C. .
D. .
3
3
4
3
Câu 30. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 3 mặt.
C. 6 mặt.
D. 4 mặt.
Câu 29. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
Câu 31. Trong khơng gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (3; 4; −4).
B. ~u = (2; 2; −1).
C. ~u = (2; 1; 6).
D. ~u = (1; 0; 2).
Câu 32. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {0}.
B. D = R \ {1}.
C. D = R.
D. D = (0; +∞).
x2
Câu 33. [2] Tổng các nghiệm của phương trình 3 x−1 .2 = 8.4 x−2 là
A. 2 − log2 3.
B. 1 − log3 2.
C. 3 − log2 3.
D. 1 − log2 3.
Câu 34. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC theo a
√
√
a3 15
a3
a3 15
a3 5
A.
.
B.
.
C.
.
D.
.
25
3
5
25
Câu 35. Trong các mệnh đề dưới đây, mệnh đề nào sai?
!
un
A. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
!
un
B. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn !
un
C. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
D. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
x2 − 12x + 35
Câu 36. Tính lim
x→5
25 − 5x
2
A. − .
B. +∞.
C. −∞.
5
Câu 37. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 3.
C. 2.
D. Vô nghiệm.
x3 − 1
Câu 38. Tính lim
x→1 x − 1
A. 3.
B. 0.
D. +∞.
C. −∞.
D.
2
.
5
2
x
Câu 39. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = .
B. M = e, m = 0.
C. M = e, m = 1.
D. M = , m = 0.
e
e
4
0
Câu 40. [2] Cho hàm số f (x) = ln(x + 1). Giá trị f (1) bằng
1
ln 2
A. 2.
B. 1.
C. .
D.
.
2
2
n−1
Câu 41. Tính lim 2
n +2
A. 0.
B. 1.
C. 3.
D. 2.
Trang 3/10 Mã đề 1
Câu 42. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lăng trụ tam giác.
B. Khối bát diện đều.
C. Khối lập phương.
D. Khối tứ diện.
Câu 43. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Hai đường phân giác y = x và y = −x của các góc tọa độ.
B. Trục ảo.
C. Trục thực.
D. Đường phân giác góc phần tư thứ nhất.
d = 300 .
Câu 44. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
0
Độ dài cạnh bên
√ CC = 3a. Thể tích V3 √của khối lăng trụ đã cho.
3
√
a 3
3a 3
.
B. V =
.
C. V = 3a3 3.
A. V =
D. V = 6a3 .
2
2
Câu 45. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất khơng thay đổi?
A. 102.423.000.
B. 102.016.000.
C. 102.016.000.
D. 102.424.000.
√
Câu 46. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng
√
√
√
3a 38
3a
a 38
3a 58
.
B.
.
C.
.
D.
.
A.
29
29
29
29
Câu 47. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 1.
B. 3.
C. 0.
D. 2.
Câu 48. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là
√
√
a3 6
a3 5
a3 15
A.
.
B.
.
C.
.
D. a3 6.
3
3
3
Câu 49. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp ngữ giác.
B. Hai khối chóp tam giác.
C. Một khối chóp tam giác, một khối chóp tứ giác.
D. Hai khối chóp tứ giác.
Câu 50. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m ≤ 3.
C. m ≥ 3.
D. m < 3.
1
Câu 51. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 0 ≤ m ≤ 1.
C. 2 < m ≤ 3.
D. 0 < m ≤ 1.
Câu 52. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 2.
B. 1.
C. 6.
D. −1.
Câu 53. Bát diện đều thuộc loại
A. {4; 3}.
B. {3; 4}.
D. {5; 3}.
C. {3; 3}.
Câu 54. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −12.
B. −5.
C. −15.
D. −9.
Trang 4/10 Mã đề 1
π π
Câu 55. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 1.
B. 3.
C. −1.
D. 7.
7n2 − 2n3 + 1
Câu 56. Tính lim 3
3n + 2n2 + 1
7
2
B. .
C. 1.
D. 0.
A. - .
3
3
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 57. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là
√
√
√
a3 3
a3 2
a3 3
2
A.
.
B.
.
C. 2a 2.
.
D.
12
24
24
Câu 58. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d song song với (P).
B. d nằm trên P hoặc d ⊥ P.
C. d nằm trên P.
D. d ⊥ P.
x
Câu 59. Tính diện tích hình phẳng giới hạn bởi các đường
√ y = xe , y = 0, x = 1.
1
3
3
A. .
B. 1.
C.
.
D. .
2
2
2
Câu 60. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
B. Cả ba đáp án trên.
√
C. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
D. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
3
2
Câu 61. Giá√trị cực đại của hàm số y =
√ x − 3x − 3x + 2
√
A. −3 + 4 2.
B. −3 − 4 2.
C. 3 + 4 2.
√
D. 3 − 4 2.
Câu 62. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 2.
B. 3.
Câu 63. Tính lim
x→+∞
C. +∞.
D. 1.
x−2
x+3
2
C. − .
D. 1.
3
Câu 64. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√
√ chóp S .ABCD là
√
3
3
a 3
a3 3
a3 6
a 2
.
B.
.
C.
.
D.
.
A.
16
48
24
48
9t
Câu 65. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 0.
B. Vô số.
C. 2.
D. 1.
A. −3.
B. 2.
Câu 66. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối lập phương.
C. Khối tứ diện đều.
Câu 67. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 4.
B. 3.
C. 2.
Câu 68. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 3.
B. 1.
C. 2.
D. Khối bát diện đều.
1
3|x−1|
= 3m − 2 có nghiệm duy
D. 1.
D. 5.
Trang 5/10 Mã đề 1
1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.
√
√
√
9 11 + 19
2 11 − 3
18 11 − 29
9 11 − 19
A. Pmin =
. B. Pmin =
.
C. Pmin =
. D. Pmin =
.
9
3
21
9
1 + 2 + ··· + n
Câu 70. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
1
A. lim un = .
B. lim un = 1.
2
C. Dãy số un không có giới hạn khi n → +∞.
D. lim un = 0.
Câu 69. [12210d] Xét các số thực dương x, y thỏa mãn log3
Câu 71. Khối lập phương thuộc loại
A. {3; 3}.
B. {3; 4}.
C. {4; 3}.
D. {5; 3}.
log(mx)
Câu 72. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m ≤ 0.
B. m < 0 ∨ m > 4.
C. m < 0.
D. m < 0 ∨ m = 4.
Câu 73. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 7.
B. 2.
C. 1.
D. 3.
Câu 74. Khối đa diện đều loại {4; 3} có số cạnh
A. 30.
B. 10.
C. 12.
D. 20.
! x3 −3mx2 +m
1
nghịch biến trên
Câu 75. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
π
khoảng (−∞; +∞)
A. m ∈ R.
B. m , 0.
C. m = 0.
D. m ∈ (0; +∞).
Câu 76. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8 √
A. m = ± 3.
B. m = ±1.
C. m = ±3.
D. m = ± 2.
12 + 22 + · · · + n2
Câu 77. [3-1133d] Tính lim
n3
1
2
A. .
B. .
C. +∞.
D. 0.
3
3
2n − 3
Câu 78. Tính lim 2
bằng
2n + 3n + 1
A. +∞.
B. 0.
C. −∞.
D. 1.
!
!
!
x
1
2
2016
4
. Tính tổng T = f
Câu 79. [3] Cho hàm số f (x) = x
+f
+ ··· + f
4 +2
2017
2017
2017
2016
.
C. T = 1008.
D. T = 2016.
A. T = 2017.
B. T =
2017
Câu 80. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 1587 m.
B. 25 m.
C. 27 m.
D. 387 m.
√
Câu 81. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 62.
C. 63.
D. Vô số.
Câu 82. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
C. f (x) có giá trị nhỏ nhất trên K.
B. f (x) có giá trị lớn nhất trên K.
D. f (x) xác định trên K.
Trang 6/10 Mã đề 1
Câu 83. Hàm số nào sau đây khơng có cực trị
1
x−2
.
B. y = x + .
C. y = x4 − 2x + 1.
A. y =
2x + 1
x
Câu 84. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm mặt.
B. Ba mặt.
C. Hai mặt.
D. y = x3 − 3x.
D. Bốn mặt.
Câu 85. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng BD và S C bằng
√
√
√
√
a 6
a 6
a 6
A. a 6.
B.
.
C.
.
D.
.
3
2
6
Câu 86. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (II) và (III).
B. (I) và (II).
C. (I) và (III).
D. Cả ba mệnh đề.
2mx + 1
1
Câu 87. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 0.
B. −5.
C. −2.
D. 1.
q
2
Câu 88. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [0; 2].
C. m ∈ [0; 1].
D. m ∈ [−1; 0].
π
Câu 89. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2
√
√
1 π3
2 π4
3 π6
C.
e .
D.
e .
A. 1.
B. e .
2
2
2
√
√
Câu 90. Tìm giá trị lớn nhất của hàm
số
y
=
x
+
3
+
6√− x
√
√
A. 3.
B. 2 + 3.
C. 3 2.
D. 2 3.
√
Câu 91. [1] Biết log6 a = 2 thì log6 a bằng
A. 6.
B. 36.
C. 4.
D. 108.
Câu 92. Cho z là√nghiệm của phương trình x2 + x + 1 = 0. Tính P = z4 + 2z3 − z
√
−1 − i 3
−1 + i 3
.
B. P = 2.
C. P = 2i.
D. P =
.
A. P =
2
2
Câu 93. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = 0.
B. x = −8.
C. x = −5.
D. x = −2.
Câu 94. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 2020.
B. log2 13.
C. 13.
D. log2 2020.
Câu 95. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −5.
B. 6.
C. 5.
2
D. −6.
[ = 60◦ , S O
Câu 96. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S√BC) bằng
√
√
a 57
2a 57
a 57
A. a 57.
B.
.
C.
.
D.
.
19
19
17
Trang 7/10 Mã đề 1
Câu 97. Tìm giới hạn lim
A. 3.
2n + 1
n+1
B. 1.
C. 2.
D. 0.
Câu 98. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 8 mặt.
D. 7 mặt.
2
2
Câu 99. [3-c] Giá trị nhỏ nhất và giá√trị lớn nhất của hàm√số f (x) = 2sin x + 2cos x lần
√ lượt là
C. 2 và 3.
D. 2 2 và 3.
A. 2 và 3.
B. 2 và 2 2.
Câu 100. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; 0) và (1; +∞). B. (−1; 0).
C. (−∞; −1) và (0; +∞). D. (0; 1).
Câu 101. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.
√
√
√
√
5 13
B. 2.
C. 26.
D.
.
A. 2 13.
13
Câu 102. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với
đáy một góc 45◦ và AB = 3a, BC = 4a.
√ Thể tích khối chóp S .ABCD là
3
10a
3
A. 40a3 .
B.
.
C. 10a3 .
D. 20a3 .
3
1
bằng
Câu 103. [1] Giá trị của biểu thức log √3
10
1
1
C. .
D. 3.
A. −3.
B. − .
3
3
Câu 104. Khối đa diện đều loại {5; 3} có số đỉnh
A. 8.
B. 12.
cos n + sin n
Câu 105. Tính lim
n2 + 1
A. 0.
B. +∞.
C. 30.
D. 20.
C. −∞.
D. 1.
Câu 106. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung
điểm cạnh√AB, biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là
√
4a3 3
a3
a3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
3
6
3
x+2
Câu 107. Tính lim
bằng?
x→2
x
A. 2.
B. 0.
C. 3.
D. 1.
Câu 108. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n3 lần.
C. n3 lần.
D. 2n2 lần.
Câu 109. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối tứ diện đều.
1 − n2
Câu 110. [1] Tính lim 2
bằng?
2n + 1
1
1
A. .
B. − .
3
2
C. Khối 12 mặt đều.
D. Khối bát diện đều.
C. 0.
D.
1
.
2
Câu 111. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. 6.
B. 9.
C. .
D. .
2
2
Trang 8/10 Mã đề 1
√
x2 + 3x + 5
Câu 112. Tính giới hạn lim
x→−∞
4x − 1
1
B. 1.
A. − .
4
C.
1
.
4
D. 0.
1
Câu 113. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R.
B. D = R \ {1}.
C. D = (1; +∞).
D. D = (−∞; 1).
Câu 114. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
6
. Tính
Câu 115. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2 f (x3 ) − √
3x
+
1
Z 1
f (x)dx.
0
A. −1.
B. 2.
C. 6.
D. 4.
√
Câu 116. [4-1228d] Cho phương trình
x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả
bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 63.
C. 64.
D. Vơ số.
(2 log23
Câu 117. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 5 mặt.
C. 6 mặt.
D. 4 mặt.
Câu 118. Tìm m để hàm số y = x − 3mx + 3m có 2 điểm cực trị.
A. m , 0.
B. m > 0.
C. m = 0.
D. m < 0.
Câu 119. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 2).
B. (−∞; 0) và (2; +∞). C. (0; +∞).
D. (0; 2).
3
2
2
Câu 120. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm tứ diện đều.
B. Một tứ diện đều và bốn hình chóp tam giác đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.
D. Bốn tứ diện đều và một hình chóp tam giác đều.
Câu 121. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
C. 3.
D. .
A. 1.
B. .
2
2
Câu 122. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. e.
B. −2 + 2 ln 2.
C. 4 − 2 ln 2.
D. 1.
Câu 123. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 4.
B. V = 3.
C. V = 6.
D. V = 5.
Câu 124.! Dãy số nào sau đây có !giới hạn là 0?
n
n
5
1
A. − .
B.
.
3
3
!n
4
C.
.
e
!n
5
D.
.
3
Câu 125. Khẳng định nào sau đây đúng?
A. Hình lăng trụ tứ giác đều là hình lập phương.
B. Hình lăng trụ đứng là hình lăng trụ đều.
C. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
Trang 9/10 Mã đề 1
Câu 126. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 6.
B. y(−2) = 2.
C. y(−2) = 22.
D. y(−2) = −18.
1
Câu 127. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 1) và (3; +∞). B. (1; +∞).
C. (−∞; 3).
D. (1; 3).
Câu 128. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi
M, N và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,
√ N, P bằng
√
√
√
14 3
20 3
A.
D. 6 3.
.
B.
.
C. 8 3.
3
3
Câu 129. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. Vô nghiệm.
B. 3 nghiệm.
C. 1 nghiệm.
D. 2 nghiệm.
Câu 130. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 − sin 2x.
B. −1 + 2 sin 2x.
C. 1 + 2 sin 2x.
D. −1 + sin x cos x.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
C
3.
2. A
D
4. A
5. A
6. A
D
7.
9.
B
8.
C
10.
C
11.
D
12. A
13.
D
14.
15. A
B
16.
C
17.
B
18.
D
19.
B
20.
D
21.
B
22.
D
D
23.
25.
24. A
B
26.
27. A
28.
29. A
31.
C
32.
35.
D
D
B
37. A
38. A
39.
40. A
41. A
42.
C
33. A
34. A
36.
B
D
B
43. A
44. A
45.
46. A
47.
C
48. A
49.
C
C
50.
C
51.
52.
C
53.
D
B
54. A
55. A
56. A
57.
B
59.
B
58.
B
60.
61. A
C
63.
62. A
64.
B
65.
66.
68.
D
D
C
67.
69.
C
1
D
B
70. A
71.
D
72.
C
74.
76.
78.
73.
79.
B
81.
C
C
B
83. A
84.
B
85.
86.
B
87. A
D
88.
C
90.
C
91.
C
B
93.
94.
B
95. A
96.
D
89.
92.
B
97.
C
98. A
B
C
99.
D
101.
D
102.
D
103.
104.
D
105. A
106. A
107. A
108. A
109.
110.
C
77. A
82. A
100.
B
75.
D
80.
C
B
B
111.
B
D
112. A
113.
114. A
115.
D
116. A
117.
D
118. A
119.
120.
121.
B
122. A
124.
B
D
123. A
125.
B
126.
D
127. A
128.
D
129.
130.
C
B
2
D
D