Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg 7 (104)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.83 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B thuộc
∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và AC = BD = a.
Khoảng√cách từ A đến mặt phẳng (BCD) bằng



a 2
a 2
.
B. 2a 2.
C. a 2.
D.
.
A.
4
2
5
Câu 2. Tính lim
n+3
A. 2.
B. 0.
C. 1.


D. 3.
Câu 3. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 4. Tính√mơ đun của số phức z biết (1 + 2i)z2 = 3 + 4i. √
B. |z| = 5.
C. |z| = 5.
A. |z| = 2 5.

D. |z| =

Câu 5. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = x + ln x.
B. y0 = ln x − 1.

D. y0 = 1 + ln x.

C. y0 = 1 − ln x.

√4
5.

3a
, hình chiếu vng góc
2
của S trên mặt phẳng (ABCD) là √
trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD) bằng
a

a 2
2a
a
A. .
B.
.
C.
.
D. .
4
3
3
3
Câu 6. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =

Câu 7. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 27.
B.
.
C. 12.
D. 18.
2
Câu 8. Phát biểu nào sau đây là sai?
A. lim un = c (Với un = c là hằng số).
C. lim qn = 1 với |q| > 1.

1
= 0 với k > 1.

nk
1
D. lim √ = 0.
n

B. lim

1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
B. xy0 = ey + 1.
C. xy0 = −ey + 1.
D. xy0 = −ey − 1.

Câu 9. [3-12217d] Cho hàm số y = ln
A. xy0 = ey − 1.

Câu 10. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. f (x) có giới hạn hữu hạn khi x → a.
B. lim f (x) = f (a).
C. lim+ f (x) = lim− f (x) = a.
x→a

x→a

x→a

D. lim+ f (x) = lim− f (x) = +∞.

x→a


2
Câu 11. Thể tích của khối lập phương

cạnh
bằng
a

3

2a 2
A. V = a3 2.
B.
.
C. V = 2a3 .
3

x→a


D. 2a3 2.

Câu 12. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 3.
B. 1.
C. 7.
D. 2.
Trang 1/10 Mã đề 1



!
!
!
4x
1
2
2016
Câu 13. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T =
.
B. T = 1008.
C. T = 2016.
D. T = 2017.
2017
un
Câu 14. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 1.
B. 0.
C. −∞.

D. +∞.
Câu 15. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Bốn mặt.
B. Một mặt.
C. Ba mặt.
D. Hai mặt.

Câu 16. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √


a3 6
a 2
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
36
6
6
18
Câu 17. Khối đa diện đều loại {3; 4} có số mặt

A. 10.
B. 8.
C. 6.
D. 12.
Câu 18. Giá√trị cực đại của hàm số y√= x3 − 3x2 − 3x + 2

A. −3 + 4 2.
B. 3 − 4 2.
C. 3 + 4 2.


D. −3 − 4 2.

Câu 19. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
C. m ≤ 0.
D. m > − .
A. m ≥ 0.
B. − < m < 0.
4
4
3

Câu 20. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e5 .
B. e3 .
C. e2 .


D. e.

Câu 21. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 24.
B. 22.
C. 23.
D. 21.
Câu 22. [2]√Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 2√
A. m = ± 3.
B. m = ±3.
C. m = ±1.
D. m = ± 2.
 π π
Câu 23. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 3.
B. −1.
C. 7.
D. 1.
Câu 24. Cho số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.

A. |z| = 17.
B. |z| = 10.
C. |z| = 17.
D. |z| = 10.
Câu 25. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi

ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó không rút tiền ra?
A. 14 năm.
B. 11 năm.
C. 10 năm.
D. 12 năm.
Câu 26. [2] Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8 √
A. m = ±1.
B. m = ± 3.
C. m = ±3.
D. m = ± 2.
Câu 27. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 0, 8.
B. 72.
C. −7, 2.

D. 7, 2.

Câu 28. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là −4.
B. Phần thực là −3, phần ảo là 4.
C. Phần thực là 3, phần ảo là 4.
D. Phần thực là 3, phần ảo là −4.
Trang 2/10 Mã đề 1


Câu 29. Tính lim
x→5

2
A. .

5

x2 − 12x + 35
25 − 5x

2
C. − .
5

B. +∞.
x+1
bằng
x→+∞ 4x + 3
B. 3.

D. −∞.

Câu 30. Tính lim
A. 1.

C.

1
.
4

D.

1
.

3




x = 1 + 3t




Câu 31. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là












x
=
1
+
7t
x
=
−1
+
2t
x
=
−1
+
2t
x = 1 + 3t

















A. 
.
B. 
y=1+t
y = −10 + 11t . C. 
y = −10 + 11t . D. 
y = 1 + 4t .
















z = 1 + 5t
z = −6 − 5t
z = 6 − 5t
z = 1 − 5t

Câu 32. Giá trị lớn nhất của hàm số y =
A. 1.

B. −5.

1
2mx + 1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
C. −2.
D. 0.
2

Câu 33. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log3 2.
B. 2 − log2 3.
C. 3 − log2 3.

D. 1 − log2 3.

Câu 34. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim+ f (x) = f (b).
B. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a

x→b

x→a


x→b

C. lim− f (x) = f (a) và lim− f (x) = f (b).

x→a

x→b

x→a

x→b

D. lim− f (x) = f (a) và lim+ f (x) = f (b).

Câu 35. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
B. .
C. 9.
D. 6.
A. .
2
2
Câu 36. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = ln 10.

B. f 0 (0) = 1.


C. f 0 (0) = 10.

Câu 37. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 2.

B. 1.

C. 4.

D. f 0 (0) =
1
3|x−1|

1
.
ln 10

= 3m − 2 có nghiệm duy

D. 3.

Câu 38. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

α+β
α β
A. a = a .a .
B. β = a β .
C. aα bα = (ab)α .

D. aαβ = (aα )β .
a
Câu 39. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. −e.
B. − .
C. − 2 .
D. − .
e
e
2e
1
Câu 40. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 ≤ m ≤ −1.
B. (−∞; −2) ∪ (−1; +∞). C. (−∞; −2] ∪ [−1; +∞). D. −2 < m < −1.
Trang 3/10 Mã đề 1


Câu 41. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
1
a
, với a, b ∈ Z. Giá trị của a + b là

Câu 42. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
4 b ln 3
A. 7.
B. 4.
C. 1.
D. 2.
x
Câu 43. Tính diện tích hình phẳng giới hạn bởi các đường
√ y = xe , y = 0, x = 1.
3
3
1
A. 1.
B. .
C.
.
D. .
2
2
2
Câu 44. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 5.
B. V = 3.
C. V = 6.
D. V = 4.

Câu 45. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a


a3 5
a3
a3 15
a3 15
.
B.
.
C.
.
D.
.
A.
25
25
3
5
d = 60◦ . Đường chéo
Câu 46. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0





4a3 6
a3 6
2a3 6
3
A. a 6.
B.

.
C.
.
D.
.
3
3
3
Câu 47. Khối đa diện đều loại {5; 3} có số cạnh
A. 20.
B. 8.
C. 12.
D. 30.
Câu 48. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
1 − 2n
A. un =
.
B. un =
.
2
n
5n + n2

C. un =

n2 − 2
.
5n − 3n2


D. un =

n2 + n + 1
.
(n + 1)2

Câu 49. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (1; 3; 2).
B. (2; 4; 3).
C. (2; 4; 6).
D. (2; 4; 4).
Câu 50. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba cạnh.
B. Bốn cạnh.
C. Hai cạnh.

D. Năm cạnh.

Câu 51. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 10.
B. 27.
C. 3.
D. 12.
1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
Câu 52. [12210d] Xét các số thực dương x, y thỏa mãn log3
x + 2y
Pmin của P = x√+ y.




9 11 − 19
9 11 + 19
2 11 − 3
18 11 − 29
A. Pmin =
. B. Pmin =
. C. Pmin =
.
D. Pmin =
.
9
9
3
21
0 0 0 0
0
Câu 53.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 3
a 6
A.
.
B.
.
C.

.
D.
.
2
7
2
3


4n2 + 1 − n + 2
Câu 54. Tính lim
bằng
2n − 3
3
A. 1.
B. .
C. 2.
D. +∞.
2
Trang 4/10 Mã đề 1


Câu 55. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4





a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
24
36
6
12 + 22 + · · · + n2
Câu 56. [3-1133d] Tính lim
n3
1
2
A. 0.
B. .
C. +∞.
D. .
3

3
Câu 57. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 8π.
B. 32π.
C. 16π.
D. V = 4π.
Câu 58. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 10 năm.
B. 7 năm.
C. 9 năm.
D. 8 năm.
Câu 59. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1637
1728
23
1079
A.
.
B.
.
C.
.
D.
.
4913
4913

68
4913
q
2
Câu 60. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [0; 2].
C. m ∈ [0; 1].
D. m ∈ [−1; 0].
Câu 61. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 3ac
3b + 2ac
.
B.
.
C.
.
D.
.
A.
c+2
c+1
c+3
c+2
Câu 62. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là

A. Phần thực là 4, phần ảo là −1.
B. Phần thực là −1, phần ảo là −4.
C. Phần thực là 4, phần ảo là 1.
D. Phần thực là −1, phần ảo là 4.
tan x + m
Câu 63. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. [0; +∞).
B. (1; +∞).
C. (−∞; 0] ∪ (1; +∞). D. (−∞; −1) ∪ (1; +∞).

Câu 64. Cho chóp S .ABCD có đáy ABCD là hình vuông cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là



a3
a3 3
a3 3
3
C.
A.
.
B. a 3.
.
D.

.
4
3
12
Câu 65. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 3}.
B. {3; 4}.
C. {5; 3}.
D. {4; 3}.
log 2x
Câu 66. [1229d] Đạo hàm của hàm số y =

x2
1 − 2 ln 2x
1 − 4 ln 2x
1
1 − 2 log 2x
0
0
A. y0 = 3
.
B. y0 =
.
C.
y
=
.
D.
y
=

.
x ln 10
2x3 ln 10
2x3 ln 10
x3
Câu 67. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R.
B. D = (−2; 1).
C. D = R \ {1; 2}.
2

D. D = [2; 1].
Trang 5/10 Mã đề 1


Câu 68. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.


Câu 69. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√ cho là



πa3 3
πa3 3

πa3 3
πa3 6
.
B. V =
.
C. V =
.
D. V =
.
A. V =
6
2
6
3
Câu 70. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng




20 3
14 3
A. 6 3.
B. 8 3.
C.
.
D.
.
3

3
Câu 71. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (II) đúng.

B. Cả hai câu trên đúng. C. Chỉ có (I) đúng.

D. Cả hai câu trên sai.

Câu 72. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
B. F(x) = G(x) trên khoảng (a; b).
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. Cả ba câu trên đều sai.
1
Câu 73. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; 3).
B. (−∞; 3).
C. (1; +∞).

D. (−∞; 1) và (3; +∞).
Câu 74. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
9
2
1
1
A.
.
B. .
C.
.
D. .
10
5
10
5
1
Câu 75. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 0 ≤ m ≤ 1.
C. 0 < m ≤ 1.
D. 2 ≤ m ≤ 3.
Câu 76. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 0.
B. m > −1.
C. m > 1.

D. m ≥ 0.


Câu 77. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
B. Z
F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
u0 (x)
C.
dx = log |u(x)| + C.
u(x)
D. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Câu 78. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 2).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số đồng biến trên khoảng (0; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).
Trang 6/10 Mã đề 1


Câu 79. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n3 lần.
B. 3n3 lần.
C. n lần.
D. n2 lần.
!
x+1
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
Câu 80. [3] Cho hàm số f (x) = ln 2017 − ln
x
2017

2016
4035
A.
.
B. 2017.
C.
.
D.
.
2018
2017
2018
Câu 81. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (−∞; −1).
C. (−1; 1).
D. (1; +∞).
!
5 − 12x
Câu 82. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 1.
B. 3.
C. 2.
D. Vô nghiệm.
Câu 83. Bát diện đều thuộc loại
A. {5; 3}.
B. {3; 4}.


C. {4; 3}.

D. {3; 3}.

Câu 84. Khối đa diện đều loại {4; 3} có số đỉnh
A. 6.
B. 4.

C. 10.

D. 8.

Câu 85. Cho hình chóp S .ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy một góc 60◦ . Thể tích khối
√ chóp S .ABCD là 3 √

3

2a 3
a 3
a3 3
3
B.
.
C.
.
D.
.
A. a 3.
3

6
3
Câu 86. Cho z là nghiệm của phương trình√ x2 + x + 1 = 0. Tính P = z4 + 2z3 − z

−1 − i 3
−1 + i 3
A. P = 2i.
B. P =
.
C. P = 2.
D. P =
.
2
2
Câu 87. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 6 lần.
B. Tăng gấp đôi.
C. Tăng gấp 4 lần.
D. Tăng gấp 8 lần.
Câu 88. Hàm số y =
A. x = 1.

x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 0.

C. x = 2.


D. x = 3.

Câu 89. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng là hình lăng trụ đều.
B. Hình lăng trụ tứ giác đều là hình lập phương.
C. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
!
3n + 2
2
Câu 90. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 2.
B. 3.
C. 4.
D. 5.
Câu 91. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 1.
C. 3.

D. Vô nghiệm.

Câu 92. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=

=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 1; 6).
B. ~u = (2; 2; −1).
C. ~u = (1; 0; 2).
D. ~u = (3; 4; −4).
Trang 7/10 Mã đề 1


!4x
!2−x
2
3
Câu 93. Tập các số x thỏa mãn


3 # 2
"
!
2
2
A.
; +∞ .
B. −∞; .
5
3


#
2
C. −∞; .
5
!x
1

Câu 94. [2] Tổng các nghiệm của phương trình 31−x = 2 +
9
A. − log3 2.
B. 1 − log2 3.
C. − log2 3.
Câu 95. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
B. y = log √2 x.
A. y = log π4 x.

C. y = loga x trong đó a = 3 − 2.
D. y = log 14 x.
!2x−1
!2−x
3
3
Câu 96. Tập các số x thỏa mãn


5
5
A. [1; +∞).
B. (+∞; −∞).

C. [3; +∞).

"

!
2
D. − ; +∞ .
3

D. log2 3.

D. (−∞; 1].

Câu 97. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.424.000.
C. 102.423.000.
D. 102.016.000.
Câu 98. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó,√các kích
√ thước của hình hộp là
C. 2, 4, 8.
D. 8, 16, 32.
A. 6, 12, 24.
B. 2 3, 4 3, 38.
Câu 99. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −5.

B. 6.
C. 5.
2

D. −6.

Câu 100. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm tứ diện đều.
B. Năm hình chóp tam giác đều, khơng có tứ diện đều.
C. Một tứ diện đều và bốn hình chóp tam giác đều.
D. Bốn tứ diện đều và một hình chóp tam giác đều.
x+1
Câu 101. Tính lim
bằng
x→−∞ 6x − 2
1
1
B. .
A. .
3
2
Câu 102. Khối lập phương thuộc loại
A. {3; 3}.
B. {5; 3}.

C.

1
.

6

C. {3; 4}.

D. 1.
D. {4; 3}.

Câu 103.
định nào sau đây là sai?
!0
Z Các khẳng
Z
Z
A.
f (x)dx = f (x).
B.
k f (x)dx = k
f (x)dx, k là hằng số.
Z
Z
Z
Z
C.
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C. D.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.
Câu 104. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có hai.

B. Có một.
C. Có vơ số.
D. Khơng có.
Câu 105. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 1.
B. 3.

C. 2.

D. +∞.
Trang 8/10 Mã đề 1


Câu 106. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị nhỏ nhất của biểu thức P = x + 2y thuộc tập nào dưới
!
"
!
" đây?
5
5
;3 .
D. 2; .
A. [3; 4).
B. (1; 2).
C.
2
2
4x + 1

bằng?
x→−∞ x + 1
A. 2.
B. −4.

x2 + 3x + 5
Câu 108. Tính giới hạn lim
x→−∞
4x − 1
A. 1.
B. 0.


ab.

Câu 107. [1] Tính lim

C. 4.

D. −1.

1
1
C. − .
D. .
4
4
Câu 109. [4-1246d] Trong tất cả các số phức z thỏa mãn√|z − i| = 1. Tìm giá trị lớn√nhất của |z|
A. 1.
B. 2.

C. 3.
D. 5.
Câu 110. [1] Đạo hàm của làm số y = log x là
ln 10
1
A. y0 =
.
B.
.
x
10 ln x

1
C. y0 = .
x

D. y0 =

1
.
x ln 10

Câu 111. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tứ giác.
B. Một hình chóp tứ giác và một hình chóp ngũ giác.
C. Hai hình chóp tam giác.
D. Một hình chóp tam giác và một hình chóp tứ giác.
Câu 112. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.

B. 4.

C. 3.

Câu 113. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −5.
B. −3.
C. −7.

D. 2.
D. Không tồn tại.

Câu 114. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1202 m.
B. 6510 m.
C. 1134 m.
D. 2400 m.
Câu 115. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−1; 0).
B. (0; 1).
C. (−∞; 0) và (1; +∞). D. (−∞; −1) và (0; +∞).
Câu 116. Khối chóp ngũ giác có số cạnh là
A. 10 cạnh.
B. 11 cạnh.

C. 12 cạnh.

D. 9 cạnh.


Câu 117. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. 3.
C. Vô nghiệm.
D. 1.
Câu 118. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng
(cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 16 tháng.
B. 15 tháng.
C. 18 tháng.
D. 17 tháng.

Câu 119. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh
bên S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a
3a 38
a 38
3a 58
A.
.
B.
.
C.
.

D.
.
29
29
29
29
Trang 9/10 Mã đề 1


Câu 120. Khối đa diện đều loại {3; 3} có số cạnh
A. 5.
B. 8.

C. 4.

D. 6.

Câu 121. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.




5 13
A. 2.
B.
.
C. 26.
D. 2 13.
13


Câu 122. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị ngun dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 63.
C. 64.
D. Vô số.
Câu 123. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 2.

B. 4.

C. 3.
D. 1.
x−3 x−2 x−1
x
Câu 124. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là

A. [2; +∞).
B. (−∞; 2].
C. (−∞; 2).
D. (2; +∞).
Câu 125. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 1.
B. 2.

C. +∞.

D. 0.

Câu 126. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −3 ≤ m ≤ 3.
B. m ≥ 3.
C. m ≤ 3.
D. −2 ≤ m ≤ 2.
Câu 127. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).

Hai mặt bên
√ (S BC) và (S AD) cùng
√ hợp với đáy một góc 303 .√Thể tích khối chóp S .ABCD
√ là
3
3
3
8a 3
a 3
8a 3

4a 3
A.
.
B.
.
C.
.
D.
.
9
9
3
9
Câu 128. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {2}.
B. {5}.
C. {5; 2}.
D. {3}.
Câu 129. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 8.
B. 3.
C. 6.
D. 4.
Z 2
ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
Câu 130. Cho
x2
1

A. 0.
B. −3.
C. 1.
D. 3.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
3.

D

2.

B

4.

B

D

5.

D


6.

C

7.

D

8.

C

9. A

10.
D

11.
13.

B

14.

B
D

20. A


B
B

24.

D

26.

D

28.

C

29. A
B

34.

35.

B

36. A

37.

B


38.

39.

D

40. A

41.

D

42. A

43. A

44.

45. A

46. A
D

47.

48.

49.

C


50. A

51.

C

52.

53.

D

56.

B
B

D
B
C
B

59. A

C
D

61.


62. A

63.
C

65.

66. A
68.

D

54. A

55. A
60.

C

32.

C

33.

64.

B

30.


31.

58.

C

22.
D

27.

D

18. A

23.
25.

B

16.

19.
21.

D

12.


15. A
17.

B

D
B
C

67. A
D

69.
1

D


70. A

71.

72. A

73.

74. A

75. A


76.
80. A

81.

82. A

83.
D

84.

C

79. A

C

C

86.

D

77.

B

78.


B

88. A

C
B

85.

D

87.

D
C

89.

90.

C

91.

92.

C

93.


94.

C

95.

B

96. A

97.

B

98. A

99. A

100.

C

102.

D

104. A

C


103.

C

105.

C
C

C

107.

108.

C

109.
D

B

113.

114.

B

115. A


116. A

117. A

118. A

119.
D

121.

122. A

123.

124. A

125.

126. A

127. A

128.

B

130.

B


B

111.

112.

120.

D

101.

106.
110.

B

129.

2

C
D

D
B
C
D
B




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×