Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg 7 (211)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (149.96 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích hình
hộp đã √cho là√1728. Khi đó, các kích thước của hình hộp là
A. 2 3, 4 3, 38.
B. 8, 16, 32.
C. 6, 12, 24.
D. 2, 4, 8.
Câu 2. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục ảo.
B. Hai đường phân giác y = x và y = −x của các góc tọa độ.
C. Trục thực.
D. Đường phân giác góc phần tư thứ nhất.
Câu 3. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1079
1637
1728
23
A.
.
B.
.
C.


.
D.
.
4913
4913
4913
68
Z 3
x
a
a
Câu 4. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá trị

d
d
0 4+2 x+1
P = a + b + c + d bằng?
A. P = −2.
B. P = 16.
C. P = 4.
D. P = 28.
3
2
x
Câu 5. [2] Tìm
√ m để giá trị nhỏ nhất của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng 2 √
B. m = ±3.
C. m = ±1.
D. m = ± 3.

A. m = ± 2.

Câu 6. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vuông góc
với (S BC).

√ Thể tích khối chóp S 3.ABC
√ là

3
a 3
a 3
a3 2
a3 3
A.
.
B.
.
C.
.
D.
.
4
6
12
12
Câu 7. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
A. lim [ f (x) + g(x)] = a + b.

B. lim
= .
x→+∞
x→+∞ g(x)
b
C. lim [ f (x) − g(x)] = a − b.
D. lim [ f (x)g(x)] = ab.
x→+∞

x→+∞

Câu 8. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng 2n+1.
B. Số cạnh của khối chóp bằng 2n.
C. Số đỉnh của khối chóp bằng 2n + 1.
D. Số mặt của khối chóp bằng số cạnh của khối chóp.
1

Câu 9. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (−∞; 1).
B. D = R.
C. D = (1; +∞).

D. D = R \ {1}.

Câu 10. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1

A. m ≤ .
B. m > .
C. m < .
D. m ≥ .
4
4
4
4
Câu 11. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 15, 36.
B. 3, 55.
C. 24.
D. 20.
Trang 1/10 Mã đề 1


Câu 12. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim
A. 1.

B. 0.

C. +∞.

un
bằng
vn
D. −∞.


Câu 13. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng



a 3
2a 3
a 3
A.
.
B. a 3.
C.
.
D.
.
3
2
2
Câu 14. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (II) và (III).

B. Cả ba mệnh đề.

C. (I) và (III).


Câu 15. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 5 mặt.
B. 4 mặt.
C. 6 mặt.

D. (I) và (II).
D. 3 mặt.

Câu 16. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 3}.
B. {3; 4}.
C. {4; 3}.
D. {5; 3}.
1
Câu 17. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 2 ≤ m ≤ 3.
C. 0 ≤ m ≤ 1.
D. 2 < m ≤ 3.
Câu 18. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
B.
.
C.

.
D. a3 .
A.
6
12
24
Câu 19. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 9 mặt.
D. 3 mặt.
1
Câu 20. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 0 < m ≤ 1.
C. 2 < m ≤ 3.
D. 2 ≤ m ≤ 3.
Câu 21. Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
A. Tứ diện đều.
B. Thập nhị diện đều. C. Nhị thập diện đều.

D. Bát diện đều.

Câu 22. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tam giác.
B. Một khối chóp tam giác, một khối chóp ngữ giác.
C. Một khối chóp tam giác, một khối chóp tứ giác.
D. Hai khối chóp tứ giác.
Câu 23. Tính lim

A. +∞.

x→3

x2 − 9
x−3

B. 3.

C. 6.

Câu 24.
bằng 1 là:
√ Thể tích của khối lăng trụ tam giác đều có cạnh √
3
3
3
A.
.
B. .
C.
.
2
4
4

D. −3.

3
D.

.
12
Trang 2/10 Mã đề 1


x2 − 12x + 35
Câu 25. Tính lim
x→5
25 − 5x
2
2
A. − .
B. .
5
5
Câu 26. Tứ diện đều thuộc loại
A. {4; 3}.
B. {3; 4}.

C. +∞.

D. −∞.

C. {3; 3}.

D. {5; 3}.

Câu 27. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.

C. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.


2

1

3i lần lượt √l
Câu 28. Phần thực√và phần ảo của số phức
z
=


A. Phần thực là √2 − 1, phần ảo là −√ 3.
B. Phần thực là 2, √
phần ảo là 1 − √
3.
C. Phần thực là 2 − 1, phần ảo là 3.
D. Phần thực là 1 − 2, phần ảo là − 3.
Câu 29. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
.
C. log2 a = − loga 2.
D. log2 a =
.
A. log2 a = loga 2.
B. log2 a =
loga 2

log2 a
1 − 2n
bằng?
3n + 1
2
2
1
A. 1.
B. − .
C. .
D. .
3
3
3
2
Câu 31. [3-1224d] Tìm tham số thực m để phương trình log3 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m > .
C. m < .
D. m ≥ .
4
4
4
4
Câu 32. Tính thể tích khối lập phương
biết tổng diện tích tất cả các mặt bằng 18.


C. 9.
D. 27.
A. 8.
B. 3 3.
Câu 30. [1] Tính lim

Câu 33. Khối đa diện đều loại {3; 4} có số mặt
A. 12.
B. 8.

C. 10.

D. 6.

Câu 34. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −4.
B. −2.
C.
.
D. −7.
27
x2 − 3x + 3
đạt cực đại tại
Câu 35. Hàm số y =
x−2
A. x = 3.
B. x = 1.
C. x = 2.

D. x = 0.
√3
4
Câu 36. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
2
5
7
5
A. a 3 .
B. a 8 .
C. a 3 .
D. a 3 .
Câu 37. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 + 2 sin 2x.
B. −1 + 2 sin 2x.
C. 1 − sin 2x.
D. −1 + sin x cos x.
2
3
7n − 2n + 1
Câu 38. Tính lim 3
3n + 2n2 + 1
2
7
A. 1.
B. - .
C. .
D. 0.
3
3

1 + 2 + ··· + n
Câu 39. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
1
A. lim un = .
B. lim un = 0.
2
C. lim un = 1.
D. Dãy số un khơng có giới hạn khi n → +∞.
Trang 3/10 Mã đề 1


Câu 40. Khối đa diện đều loại {3; 4} có số cạnh
A. 6.
B. 8.
5
Câu 41. Tính lim
n+3
A. 0.
B. 3.
x3 − 1
Câu 42. Tính lim
x→1 x − 1
A. −∞.
B. 3.

C. 12.

D. 10.


C. 1.

D. 2.

C. 0.

D. +∞.

Câu 43. [4-1246d] Trong tất cả√các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất
√ của |z|
A. 1.
B. 5.
C. 2.
D. 3.
2
ln x
m
Câu 44. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 135.
B. S = 32.
C. S = 24.
D. S = 22.
x−1
Câu 45. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét

x+2
tam giác
AB có độ dài bằng

√ đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng √
A. 2 3.
B. 2.
C. 6.
D. 2 2.
2

Câu 46. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 3 − log2 3.
B. 2 − log2 3.
C. 1 − log3 2.

D. 1 − log2 3.

Câu 47. Khối đa diện đều loại {3; 3} có số cạnh
A. 8.
B. 4.

C. 6.

D. 5.

Câu 48. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 2.


C. 4.

D. 3.

Câu 49. Cho hàm số y = x − 3x − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số nghịch biến trên khoảng (−∞; 0).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số đồng biến trên khoảng (1; 2).
3

2

Câu 50. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 3).
B. A0 (−3; −3; 3).
C. A0 (−3; 3; 1).
D. A0 (−3; −3; −3).
Câu 51. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 2.

B. 1.

C. 3.


D. 4.

Câu 52. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n3 lần.
B. 2n2 lần.
C. n3 lần.
D. n3 lần.
Câu 53. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 5.
B. 7.

C. 0.

D. 9.

Câu 54. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. Vô nghiệm.
C. 2.
D. 1.
Trang 4/10 Mã đề 1


!
3n + 2
2
Câu 55. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử

n+2
của S bằng
A. 3.
B. 5.
C. 2.
D. 4.

Câu 56. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a 38
a 38
3a
3a 58
A.
.
B.
.
C.
.
D.
.
29
29
29
29
d = 120◦ .

Câu 57. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
B. 3a.
C. 2a.
D. 4a.
A.
2
Câu 58. [1231h] Trong khơng gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x−2 y−2 z−3
x y z−1
.
B.
=
=

.
A. = =
1 1
1
2
3
4
x y−2 z−3
x−2 y+2 z−3
C. =
=
.
D.
=
=
.
2
3
−1
2
2
2
Câu 59. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể tích khối chóp S .ABC là √


a3 3
a3
a3 3

a3 3
A.
.
B.
.
C.
.
D.
.
4
4
8
12
Câu 60. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 10.
B. ln 4.
C. ln 14.
D. ln 12.
Câu 61. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 72cm3 .
B. 64cm3 .
C. 27cm3 .
D. 46cm3 .
cos n + sin n
Câu 62. Tính lim
n2 + 1
A. +∞.
B. 0.
C. 1.

D. −∞.
Câu 63. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng




14 3
20 3
A. 6 3.
B. 8 3.
C.
.
D.
.
3
3
Câu 64. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 10 cạnh, 6 mặt.
x−2 x−1
x
x+1
+
+
+
và y = |x + 1| − x − m (m là tham

x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−3; +∞).
B. (−∞; −3).
C. (−∞; −3].
D. [−3; +∞).
Câu 65. [4-1212d] Cho hai hàm số y =

Câu 66. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (1; 2).
B. [−1; 2).
C. [1; 2].

D. (−∞; +∞).
Trang 5/10 Mã đề 1


1
Câu 67. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = −3.
B. m = −3, m = 4.
C. m = 4.
D. −3 ≤ m ≤ 4.
Câu 68. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

A. 9 mặt.
B. 6 mặt.
C. 4 mặt.

D. 3 mặt.

Câu 69. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. 3n3 lần.
B. n3 lần.
C. n2 lần.
D. n lần.
Câu 70. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.

C. Khối lập phương.

D. Khối tứ diện đều.

Câu 71. Dãy số nào có giới hạn bằng 0?
!n
6
2
.
A. un = n − 4n.
B. un =
5

!n
−2
C. un =

.
3

D. un =

Câu 72. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
A. − .
B. − .
C. −e.
e
2e

n3 − 3n
.
n+1

1
.
e2
8
Câu 73. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 96.
B. 81.
C. 64.
D. 82.
D. −


Câu 74. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
B. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
C. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
D. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Câu 75. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 2.
B. +∞.

C. 1.

D. 3.


Câu 76. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối tứ diện đều.
C. Khối bát diện đều. D. Khối 12 mặt đều.


4n2 + 1 − n + 2
bằng
Câu 77. Tính lim
2n − 3
3
A. .
B. 2.
C. 1.
D. +∞.
2
Câu 78. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {2}.
B. {3}.
C. {5}.
D. {5; 2}.
Câu 79. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 11 cạnh.

C. 10 cạnh.

D. 9 cạnh.

Câu 80. [2] Tổng các nghiệm của phương trình 9 − 12.3 + 27 = 0 là

A. 27.
B. 12.
C. 3.

D. 10.

Câu 81. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 0) và (2; +∞). B. (−∞; 2).

C. (0; 2).

D. (0; +∞).

Câu 82. Biểu thức nào sau đây √
khơng có nghĩa
−3
−1
A. 0 .
B.
−1.

C. (−1)−1 .


D. (− 2)0 .

x

x


Trang 6/10 Mã đề 1


Câu 83. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
ab
ab
1
.
B. √
.
C. 2
.
.
D. √
A. √
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
Câu 84. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. −1.
B. 2.
C. 1.

D. 6.

Câu 85. Khối đa diện đều loại {4; 3} có số cạnh

A. 20.
B. 30.

D. 10.

C. 12.

[ = 60◦ , S O
Câu 86. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ BC) bằng

√ Khoảng cách từ A đến (S

a 57
2a 57
a 57
A. a 57.
.
C.
.
D.
.
B.
19
17
19
Câu 87. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt√bên (S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là

3
3
3
3
a 3
8a 3
4a 3
8a 3
A.
.
B.
.
C.
.
D.
.
9
3
9
9
Câu 88. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích khối
√ chóp S .ABCD là


a3 3
2a3 3
a3 3
3

A.
.
B.
.
C. a 3.
.
D.
3
3
6
Câu 89.! Dãy số nào sau đây có giới! hạn là 0?
!n
!n
n
n
5
5
1
4
A.
.
B. − .
C.
.
D.
.
3
3
3
e

Câu 90. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối lập phương.

C. Khối bát diện đều.

D. Khối 12 mặt đều.

Câu 91. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 2400 m.
B. 1202 m.
C. 1134 m.
D. 6510 m.
3

Câu 92. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e5 .
B. e3 .
C. e.

D. e2 .

Câu 93. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (0; 2).
B. (−∞; 1).
C. R.
n−1
Câu 94. Tính lim 2
n +2

A. 2.
B. 3.
C. 0.

D. (2; +∞).

D. 1.

Câu 95. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Khơng thay đổi.
B. Giảm đi n lần.
C. Tăng lên (n − 1) lần. D. Tăng lên n lần.
Câu 96. Mệnh đề nào sau đây sai?
A. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).
B. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
!0
Z
C.
f (x)dx = f (x).

f (x)dx = F(x) + C.

D. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Trang 7/10 Mã đề 1


Câu 97. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào

dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.424.000.
B. 102.016.000.
C. 102.016.000.
D. 102.423.000.
Câu 98. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 5.
B. 2.
C. 1.

D. 3.

Câu 99. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d ⊥ P.
B. d nằm trên P hoặc d ⊥ P.
C. d song song với (P).
D. d nằm trên P.
x
x−3 x−2 x−1
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [2; +∞).
B. (−∞; 2).

C. (2; +∞).
D. (−∞; 2].

Câu 100. [4-1213d] Cho hai hàm số y =

Câu 101. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn mặt.
B. Ba mặt.
C. Hai mặt.

D. Năm mặt.

Câu 102. Cho hình chóp S .ABCD có√đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp S .ABCD là

2a3
2a3 3
4a3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3

3
Câu 103. [1] Tính lim
A. 0.

1 − n2
bằng?
2n2 + 1
1
B. .
3

C.

1
.
2

1
D. − .
2

Câu 104. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 3.
B. 2.
C. 0.

D. 1.

Câu 105. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi

cho tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng
(cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 15 tháng.
B. 17 tháng.
C. 18 tháng.
D. 16 tháng.
Câu 106. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m√2 + 1)2 x trên [0; 1] bằng 8√
A. m = ±1.
B. m = ±3.
C. m = ± 2.
D. m = ± 3.
Câu 107.
Cho hàm số
Z
Z f (x), g(x) liên tục trên R. Trong các
Z mệnh đề sau, mệnhZđề nào sai? Z
k f (x)dx = f

A.
Z
C.

f (x)dx, k ∈ R, k , 0.
Z
Z
( f (x) + g(x))dx =
f (x)dx + g(x)dx.

B.
Z

D.

( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
Z
f (x)g(x)dx =
f (x)dx g(x)dx.

Câu 108. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = 2.
C. y(−2) = −18.
D. y(−2) = 6.
Câu 109. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
B.
.
C. 7.
D. 5.
A. .
2
2
Trang 8/10 Mã đề 1


Câu 110. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành

A. Một hình chóp tam giác và một hình chóp tứ giác.
B. Một hình chóp tứ giác và một hình chóp ngũ giác.
C. Hai hình chóp tứ giác.
D. Hai hình chóp tam giác.
Câu 111. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc
45◦ . Tính thể tích của khối chóp S√
.ABC theo a


3
3
a 5
a3 15
a3 15
a
.
B.
.
C.
.
D.
.
A.
3
25
25
5
Câu 112. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 5 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 6 cạnh, 6 mặt.
x2 − 5x + 6

Câu 113. Tính giới hạn lim
x→2
x−2
A. 1.
B. 5.

C. −1.

Câu 114. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m > 0.
B. m = 0.
C. m < 0.

D. 0.
D. m , 0.

Câu 115. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Khơng có.
B. Có hai.
C. Có một.
D. Có một hoặc hai.
Câu 116. Phát biểu nào sau đây là sai?
1
A. lim √ = 0.
n
C. lim qn = 1 với |q| > 1.
x+1
bằng
x→+∞ 4x + 3

1
B. .
4

1
= 0 với k > 1.
nk
D. lim un = c (Với un = c là hằng số).

B. lim

Câu 117. Tính lim
A. 1.

C. 3.

D.

1
.
3

d = 30◦ , biết S BC là tam giác đều
Câu 118. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39

a 39
a 39
A.
.
B.
.
C.
.
D.
.
26
9
13
16
Câu 119. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
!
1
1
1
Câu 120. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
A. +∞.

B. 2.
C. .
D. .
2
2
log 2x
Câu 121. [1229d] Đạo hàm của hàm số y =

x2
1 − 4 ln 2x
1 − 2 log 2x
1 − 2 ln 2x
1
A. y0 =
.
B. y0 =
.
C. y0 = 3
.
D. y0 = 3
.
3
3
2x ln 10
x
x ln 10
2x ln 10
x
Câu 122. Tính diện tích hình phẳng giới hạn bởi các đường
√ y = xe , y = 0, x = 1.

3
1
3
A. .
B. .
C.
.
D. 1.
2
2
2

Trang 9/10 Mã đề 1


Câu 123. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm
0
A đến đường



√ thẳng BD bằng
abc b2 + c2
a b2 + c2
b a2 + c2
c a2 + b2
.
B. √
.
C. √

.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
3
2
Câu 124. Giá

√ trị cực đại của hàm số√y = x − 3x − 3x + 2
A. 3 − 4 2.
B. 3 + 4 2.
C. −3 + 4 2.


D. −3 − 4 2.
x+3
Câu 125. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 3.
B. 2.
C. Vô số.
D. 1.
Z 2
ln(x + 1)

Câu 126. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 3.
B. 1.
C. −3.
D. 0.
Câu 127. Cho hình
√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là

3
3

a 6
a3 15
a 5
.
B.
.
C.
.
D. a3 6.
A.
3
3
3



Câu 128.

√x
√ Tìm giá trị lớn nhất của hàm số y = x + 3 + 6 −
B. 3.
C. 2 + 3.
D. 3 2.
A. 2 3.
Câu 129. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 91cm3 .
B. 48cm3 .
C. 84cm3 .
D. 64cm3 .
!
x+1
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
Câu 130. [3] Cho hàm số f (x) = ln 2017 − ln
x
2017
4035
2016
A.
.
B.
.
C.
.
D. 2017.

2018
2018
2017
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
3.

B

5.
7.

2.

C

C

4.
6.

C


8.

B

9.

B
D
B

10. A

C

11. A

12.

13. A

14.

D

16.

D

15.


B

B

17.

D

18.

19.

D

20.

C

22.

C

24.

C

26.

C


21.

B

23.
25.

C
B

27.
29.

D

B

28. A

B

31. A

30.

B

32.

B

B

33.

B

34.

35.

B

36. A

37.

B

38.

B

39. A

40.

41. A

42.


B

44.

B

46.

B

43.

C

45. A
47.

C

48.

49. A

C

50. A

51.

52.


C

53.

D

54.

55.

D

56.

57. A

D
C
D

58. A

59.

C

60.

61.


C

62.

63. A

C
B

64.

65.
67.

C

C

66.

C
B

69.
1

D
B



70. A
72.

71.
B

73.

C
B

74. A

75. A

76. A

77.

C
C

78.

C

79.

80.


C

81. A
83.

82. A
84.

D

85.

86.

D

87.

88. A
90.

C
D
C

89.

D


91.

B

92. A

93. A
C

94.

95.

96. A
98.

D

B

97. A
B

100. A

99.

B

101.


B

102.

C

103.

D

104.

C

105.

D

106.

C

107.

D

108.

C


109. A

110.
112.

D
B

114.

111.

C

113.

C

115.

D

116.

C

117.

118.


C

119.

120.

B
D

122.

123.

C

125. A

126.

C

127.
129.

130. A

2

D

C

C
D

B

121.

124.
128.

D

B
D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×