Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg 7 (300)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (151.47 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 9 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −2.
B. −4.
C.
.
D. −7.
27
1
Câu 2. Hàm số y = x + có giá trị cực đại là
x
A. −1.
B. 2.
C. −2.
D. 1.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 3. [3-12217d] Cho hàm số y = ln
x
+
1
A. xy0 = −ey − 1.


B. xy0 = ey − 1.
C. xy0 = ey + 1.
D. xy0 = −ey + 1.
Câu 4. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



3
5a 3
a3 3
2a3 3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
2
3
3
Câu 5. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 1.
B. 5.

C. 3.
D. 2.
Câu 6. !Dãy số nào sau đây có giới !hạn là 0?
n
n
5
5
.
B. − .
A.
3
3

!n
4
C.
.
e

!n
1
D.
.
3

Câu 7. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B thuộc
∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và AC = BD = a.
Khoảng cách từ A đến mặt phẳng√(BCD) bằng




a 2
a 2
A. 2a 2.
.
C. a 2.
.
B.
D.
4
2
Câu 8. [1] Tập! xác định của hàm số y != log3 (2x + 1) là
!
!
1
1
1
1
A. − ; +∞ .
B.
; +∞ .
C. −∞; − .
D. −∞; .
2
2
2
2
Câu 9. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là√
a3

4a3 3
a3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
6
3
3

Câu 10. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √


3
a 2
a 6
a3 6
a3 6
A.
.
B.

.
C.
.
D.
.
6
6
36
18
Câu 11. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m ≤ .
C. m ≥ .
D. m < .
4
4
4
4
1 − xy
Câu 12. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.




9 11 + 19
18 11 − 29
9 11 − 19
2 11 − 3
A. Pmin =
. B. Pmin =
. C. Pmin =
. D. Pmin =
.
9
21
9
3
Trang 1/9 Mã đề 1


[ = 60◦ , S A ⊥ (ABCD).
Câu 13. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối chóp S .ABCD là

3
3

a 2
a3 3
a 2
3
.
B.

.
C. a 3.
D.
.
A.
12
4
6
Câu 14. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
A. −e.
B. − .
C. − 2 .
2e
e
Câu 15. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 + 2e
1 − 2e
A. m =
.
B. m =
.
C. m =
.
4e + 2
4 − 2e
4 − 2e


1
D. − .
e
D. m =

1 − 2e
.
4e + 2

0 0 0 0
0
Câu 16.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 3
a 6
a 6
a 6
A.
.
B.
.
C.
.
D.
.
2
2
3
7


Câu 17. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất của hàm số. Khi đó tổng

√M + m

A. 16.
B. 8 3.
C. 7 3.
D. 8 2.
Câu 18. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó không rút tiền ra?
A. 14 năm.
B. 12 năm.
C. 11 năm.
D. 10 năm.
4x + 1
bằng?
Câu 19. [1] Tính lim
x→−∞ x + 1
A. −1.
B. −4.
C. 4.
D. 2.
2n + 1
Câu 20. Tìm giới hạn lim
n+1
A. 3.

B. 2.
C. 1.
D. 0.
log 2x
Câu 21. [3-1229d] Đạo hàm của hàm số y =

x2
1 − 2 log 2x
1 − 4 ln 2x
1
1 − 2 ln 2x
A. y0 =
.
B. y0 = 3
.
C. y0 =
.
D. y0 = 3
.
3
3
x
x ln 10
2x ln 10
2x ln 10
ln x p 2
1
Câu 22. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x

3
1
8
8
1
A. .
B. .
C. .
D. .
3
3
9
9
Câu 23. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


3
3
a 3
a 6
a3 3
a3 2
A.
.
B.
.
C.
.

D.
.
24
48
48
16
Câu 24. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Khơng có.
B. Có một.
C. Có một hoặc hai.
D. Có hai.
Câu 25. Hàm số nào sau đây khơng có cực trị
A. y = x4 − 2x + 1.

B. y = x3 − 3x.

C. y =

x−2
.
2x + 1

Câu 26. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. (4; 6, 5].
C. (−∞; 6, 5).

1
D. y = x + .

x
D. [6, 5; +∞).
Trang 2/9 Mã đề 1


Câu 27. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2

A. 2.

B. 4.

3

C. 6.

Z

6
3x + 1

1

. Tính

f (x)dx.
0

D. −1.


d = 300 .
Câu 28. Cho khối lăng trụ đứng ABC.A B C có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V của khối lăng trụ đã cho. √

3
3

a
3
3a
3
A. V = 6a3 .
B. V = 3a3 3.
C. V =
.
D. V =
.
2
2
Câu 29. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
C.
.
D. 7.
A. 5.
B. .
2
2
Câu 30. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là

A. ln 12.
B. ln 10.
C. ln 4.
D. ln 14.
0

0

0

Câu 31. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 12.
B. 27.
C. 3.

D. 10.

Câu 32. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. 3.
C. 2.
D. Vô nghiệm.
Câu 33. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Thập nhị diện đều. B. Tứ diện đều.
C. Bát diện đều.

D. Nhị thập diện đều.

Câu 34. Khối đa diện đều loại {4; 3} có số mặt
A. 8.

B. 10.

C. 12.

D. 6.

Câu 35. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.

C. Khối 20 mặt đều.
0

D. Khối 12 mặt đều.

Câu 36. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A B C D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 1).
B. A0 (−3; −3; −3).
C. A0 (−3; 3; 3).
D. A0 (−3; −3; 3).
Câu 37. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 0.
B. 7.

C. 9.

0

0


D. 5.

Câu 38. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 8 đỉnh, 10 cạnh, 6 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 39. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tứ giác và một hình chóp ngũ giác.
B. Hai hình chóp tam giác.
C. Hai hình chóp tứ giác.
D. Một hình chóp tam giác và một hình chóp tứ giác.
Câu 40. Tính lim
x→2
A. 1.

x+2
bằng?
x
B. 3.

C. 2.

D. 0.
! x3 −3mx2 +m
1
Câu 41. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên

π
khoảng (−∞; +∞)
A. m , 0.
B. m ∈ R.
C. m = 0.
D. m ∈ (0; +∞).
Câu 42. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. 3n3 lần.
B. n3 lần.
C. n2 lần.
D. n lần.
Trang 3/9 Mã đề 1


2mx + 1
1
Câu 43. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. −5.
B. 1.
C. 0.
D. −2.
Câu 44. Khối đa diện đều loại {5; 3} có số đỉnh
A. 8.
B. 20.
C. 30.
D. 12.
mx − 4

Câu 45. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 67.
B. 45.
C. 34.
D. 26.
Câu 46. Mệnh đề nào sau đây sai?
A. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).
B. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
!0
Z
f (x)dx = f (x).
C.

f (x)dx = F(x) + C.

D. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0 ∨ m > 4.
D. m < 0 ∨ m = 4.

Câu 47. [3-1226d] Tìm tham số thực m để phương trình
A. m < 0.

B. m ≤ 0.

Câu 48. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó

là:
A. 46cm3 .
B. 64cm3 .
C. 27cm3 .
D. 72cm3 .
2−n
bằng
Câu 49. Giá trị của giới hạn lim
n+1
A. 0.
B. −1.
C. 2.
D. 1.
q
Câu 50. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 1].
C. m ∈ [0; 2].
D. m ∈ [0; 4].
Câu 51. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
B. F(x) = G(x) trên khoảng (a; b).
C. Cả ba câu trên đều sai.
D. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
Câu 52. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng 2n + 1.

B. Số mặt của khối chóp bằng 2n+1.
C. Số mặt của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh của khối chóp bằng 2n.
Câu 53. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD), S D = a 5. Thể tích khối
√ chóp S .ABCD là


3

a 5
a3 15
a3 6
3
A. a 6.
B.
.
C.
.
D.
.
3
3
3
Câu 54. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−1; 0).
B. (−∞; 0) và (1; +∞). C. (0; 1).
D. (−∞; −1) và (0; +∞).
1 − n2
Câu 55. [1] Tính lim 2

bằng?
2n + 1
1
1
1
A. − .
B. 0.
C. .
D. .
2
2
3
Trang 4/9 Mã đề 1



Câu 56. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là



a3 3
a3 3
a3
3
.
B. a 3.
C.
.
D.

.
A.
4
12
3
2
Câu 57. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = (−2; 1).
B. D = R.
C. D = R \ {1; 2}.
D. D = [2; 1].
Câu 58. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {2}.
B. {3}.
C. {5}.
D. {5; 2}.
[ = 60◦ , S O
Câu 59. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a. Khoảng cách từ O đến (S
√ BC) bằng


a 57
a 57
2a 57
A.
.
B. a 57.
C.

.
D.
.
17
19
19
Câu 60. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Tăng lên (n − 1) lần. B. Giảm đi n lần.
C. Không thay đổi.
D. Tăng lên n lần.
un
Câu 61. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 0.
B. −∞.
C. +∞.
D. 1.
Câu 62. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
B. 2.
C. −2.
D.
A. − .
2
2n2 − 1
Câu 63. Tính lim 6
3n + n4
2
A. 0.

B. .
C. 1.
D.
3
Câu 64. Tính thể tích khối lập phương biết tổng diện tích √
tất cả các mặt bằng 18.
A. 9.
B. 27.
C. 3 3.
D.

1
.
2

2.
8.

Câu 65. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 0.
B. m > −1.
C. m ≥ 0.
D. m > 1.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 66. [3-12217d] Cho hàm số y = ln
x
+
1
A. xy0 = −ey − 1.

B. xy0 = ey − 1.
C. xy0 = ey + 1.
D. xy0 = −ey + 1.
Câu 67. Khối đa diện đều loại {3; 5} có số mặt
A. 8.
B. 30.

C. 12.

D. 20.

Câu 68. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt phẳng vng góc với (ABCD).
Thể tích khối chóp

√ S .ABCD là
3
3

a
2
a
3
a3 3
A.
.
B. a3 3.
C.
.
D.

.
2
2
4
Câu 69. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; −8).
B. A(−4; −8)(.
C. A(4; 8).
D. A(−4; 8).
!
3n + 2
2
Câu 70. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 5.
B. 3.
C. 2.
D. 4.

2
Câu 71. [4-1228d] Cho phương trình (2 log3 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị ngun dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 64.
C. 63.
D. Vô số.
Trang 5/9 Mã đề 1



Câu 72. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 135.
B. S = 32.

ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e

C. S = 24.

D. S = 22.

Câu 73. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = −18.
B. y(−2) = 22.
C. y(−2) = 6.
D. y(−2) = 2.

Câu 74. Thể tích của khối lập phương có cạnh bằng a 2 √


2a3 2
A. V = 2a3 .
B. V = a3 2.
C.

.
D. 2a3 2.
3
8
Câu 75. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 64.
B. 82.
C. 81.
D. 96.
log 2x
Câu 76. [1229d] Đạo hàm của hàm số y =

x2
1
1 − 4 ln 2x
1 − 2 ln 2x
1 − 2 log 2x
0
0
A. y0 = 3
.
B. y0 =
.
C.
y
=
.
D.
y

=
.
2x ln 10
2x3 ln 10
x3 ln 10
x3
Câu 77. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 2.
B. 3.
C. 1.
D. 7.
Câu 78. Khối đa diện đều loại {3; 4} có số đỉnh
A. 4.
B. 6.
C. 8.
D. 10.
n−1
Câu 79. Tính lim 2
n +2
A. 3.
B. 1.
C. 0.
D. 2.
x+1
Câu 80. Tính lim
bằng
x→+∞ 4x + 3
1
1
B. .

C. 1.
D. 3.
A. .
3
4
Câu 81. Cho hình chóp S .ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy một góc 60◦ . Thể tích khối
√ chóp S .ABCD là 3 √

3

2a 3
a 3
a3 3
3
A. a 3.
B.
.
C.
.
D.
.
3
3
6
d = 30◦ , biết S BC là tam giác đều
Câu 82. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách

√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
9
16
26
13
Câu 83. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 3ac
3b + 2ac
A.
.
B.
.
C.
.
D.
.

c+2
c+2
c+1
c+3
[ = 60◦ , S O
Câu 84. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S
√ BC) bằng

2a 57
a 57
a 57
A.
.
B.
.
C.
.
D. a 57.
19
17
19
2

2

sin x
Câu 85. [3-c] Giá trị nhỏ nhất và√giá trị lớn nhất của hàm số f (x)

+ 2cos x √
lần lượt là
√ =2
A. 2 và 3.
B. 2 2 và 3.
C. 2 và 2 2.
D. 2 và 3.
1 3
Câu 86. [2D1-3] Cho hàm số y = − x + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 < m < −1.
B. (−∞; −2] ∪ [−1; +∞). C. (−∞; −2) ∪ (−1; +∞). D. −2 ≤ m ≤ −1.

Trang 6/9 Mã đề 1


Câu 87. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp ngữ giác.
B. Hai khối chóp tứ giác.
C. Một khối chóp tam giác, một khối chóp tứ giác.
D. Hai khối chóp tam giác.
Câu 88. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là 1.
B. Phần thực là 4, phần ảo là −1.
C. Phần thực là −1, phần ảo là 4.
D. Phần thực là −1, phần ảo là −4.
Câu 89. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn mặt.
B. Năm mặt.

C. Hai mặt.
Câu 90. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
n2 + n + 1
.
B.
u
=
.
A. un =
n
(n + 1)2
n2

C. un =

Câu 91. Khối đa diện đều loại {3; 5} có số cạnh
A. 30.
B. 8.
Câu 92. [2] Phương trình log4 (x + 1) + 2 = log √2
A. Vô nghiệm.
B. 2 nghiệm.
2

D. Ba mặt.

n2 − 2
.
5n − 3n2


D. un =

1 − 2n
.
5n + n2

C. 20.
D. 12.

3
4 − x + log8 (4 + x) có tất cả bao nhiêu nghiệm?
C. 3 nghiệm.
D. 1 nghiệm.

Câu 93. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 3.
C. 2.
D. 1.
Câu 94. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
. Thể tích khối lăng trụ đã cho bằng
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
3



2 3
A.
.
B. 1.
C. 2.
D. 3.
3
1
Câu 95. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 4.
B. 2.
C. 3.
D. 1.
Câu 96. Biểu thức nào sau đây khơng có nghĩa
A. 0−1 .
B. (−1)−1 .


C. (− 2)0 .

Câu 97. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 4.

B. 3.

C. 1.


Câu 98. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 4}.
B. {5; 3}.
C. {4; 3}.
Câu 99. [2] Tổng các nghiệm của phương trình 2
A. −6.
B. 6.

D.
1
3|x−1|


−1.

−3

= 3m − 2 có nghiệm duy

D. 2.
D. {3; 3}.

x2 +2x

= 82−x là
C. 5.

D. −5.

Câu 100. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và

S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 3
a 6
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
24
8
24
48
Câu 101. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 4 mặt.
C. 6 mặt.
D. 3 mặt.
Trang 7/9 Mã đề 1



Câu 102. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
A. .
B. 1.
C. .
D. 3.
2
2
Câu 103. Khối đa diện đều loại {3; 5} có số đỉnh
A. 20.
B. 30.

C. 8.

D. 12.

Câu 104. [4-1245d] Trong tất cả
√ min |z − 1 − i|.
√ các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
A. 2.
B. 10.
C. 1.
D. 2.
Câu 105. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1

A. m ≤ .
B. m > .
C. m < .
D. m ≥ .
4
4
4
4
Câu 106. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + 3.
B. T = 4 + .
C. T = e + .
D. T = e + 1.
e
e
Z 3
x
a
a
Câu 107. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 28.

B. P = 16.
C. P = −2.
D. P = 4.
Câu 108.
Cho hàm số
Z
Z f (x), g(x) liên tục trên R. Trong các
Z mệnh đề sau, mệnhZđề nào sai? Z
k f (x)dx = f

A.
Z
C.

f (x)dx, k ∈ R, k , 0.
Z
Z
( f (x) − g(x))dx =
f (x)dx − g(x)dx.

B.
Z
D.

( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
Z
f (x)g(x)dx =
f (x)dx g(x)dx.


Câu 109. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
B.
.
C. 1.
A. .
2
2

D. 2.

Câu 110. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4




a3 3
a3 3
a3 3
a3 3
A.

.
B.
.
C.
.
D.
.
24
6
36
12
x2 − 5x + 6
x→2
x−2
B. −1.

Câu 111. Tính giới hạn lim
A. 1.

C. 5.

D. 0.

Câu 112. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 91cm3 .
B. 84cm3 .
C. 48cm3 .
D. 64cm3 .
Câu 113. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm

0
A đến đường
√ thẳng BD bằng



c a2 + b2
b a2 + c2
a b2 + c2
abc b2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 114. Khối đa diện đều loại {3; 4} có số mặt
A. 12.
B. 10.

C. 8.

D. 6.
Trang 8/9 Mã đề 1



Câu 115. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 20 .(3)20
C 10 .(3)40
C 40 .(3)10
C 20 .(3)30
B. 50 50 .
C. 50 50 .
D. 50 50 .
A. 50 50 .
4
4
4
4
Câu 116. Hàm số f có nguyên hàm trên K nếu
A. f (x) xác định trên K.
B. f (x) có giá trị lớn nhất trên K.
C. f (x) có giá trị nhỏ nhất trên K.
D. f (x) liên tục trên K.
Câu 117. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 21.
B. 22.
C. 23.
D. 24.

Câu 118. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt√bên (S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
a3 3
8a3 3
8a3 3
4a3 3
A.
.
B.
.
C.
.
D.
.
9
9
3
9
log(mx)
= 2 có nghiệm thực duy nhất
Câu 119. [1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m < 0.
B. m < 0 ∨ m > 4.
C. m < 0 ∨ m = 4.
D. m ≤ 0.
Câu 120. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = ln 10.


B. f 0 (0) = 1.

C. f 0 (0) = 10.

D. f 0 (0) =

1
.
ln 10

Câu 121. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 6 mặt. B. 5 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 5 mặt. D. 6 đỉnh, 6 cạnh, 6 mặt.
1
Câu 122. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = 4.
B. −3 ≤ m ≤ 4.
C. m = −3, m = 4.
D. m = −3.
Câu 123. Khối lập phương thuộc loại
A. {5; 3}.
B. {4; 3}.

C. {3; 3}.
D. {3; 4}.
x−3 x−2 x−1
x
Câu 124. [4-1213d] Cho hai hàm số y =

+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].
B. (−∞; 2).
C. [2; +∞).
D. (2; +∞).
!
x+1
Câu 125. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
4035
2017
2016
A.
.
B.
.
C.
.
D. 2017.
2018
2018

2017
Câu 126. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = ln x − 1.
B. y0 = x + ln x.
C. y0 = 1 + ln x.
D. y0 = 1 − ln x.
x+1
Câu 127. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. .
B. .
C. .
D. 1.
2
6
3
Câu 128. Bát diện đều thuộc loại
A. {5; 3}.
B. {3; 4}.
C. {4; 3}.
D. {3; 3}.
Trang 9/9 Mã đề 1


Câu 129. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lăng trụ.

B. Hình chóp.
C. Hình tam giác.

D. Hình lập phương.

Câu 130. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
5a
2a
a
8a
.
B.
.
C.
.
D. .
A.
9
9
9
9
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/9 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ

Mã đề thi 1
1. A
3.

2.
4.

B

5.

D

6.

7.

D

8. A

9.

C

D

12.

13.


B

14.

17. A
19.
21.

C

B

16.

C

18.

C

20.

B

D
D

B
D


B

10.

11.
15.

C

B

22.

C
C

23.

C

24.

25.

C

26.

B


27.

B

28.

D

29.

B

30.

D

31.

C

32.
34.

33. A
35.

C

36.


37.

C

38. A

39.

C

B

D
C

40.

C

41.

C

42.

B

43.


C

44.

B

45.

C

46. A

47.
49.

D

48.

B

50. A

51.

D

52.

53.


D

54. A

D

56.

55. A
57.

C

B

59.

D

58.
60.

C

C
B

61. A


62.

C

63. A

64.

C

65.
67.

B

66.
D

68. A
1

B


70.

C

69.
71. A


72.

73. A

74.
C

75.

D
B
B

C

80.

81.

C

82.

83. A

C

78.


79.

D

84. A
88.

C
D

89.

92.
D

97.

B
C

96. A

C

98.
D

99.

D


94.

C

95.

B

90.

91. A
93.

D

86.

B

87.

B
C

100.
103.

102. A
C


104.

107.

D
D

108.

D

109.

110.

D

111.

112.

D

113.

C

114.
116.


D

105. A

106. A

118.

B

76.

77. A

85.

D

D
B

120. A

B
C

115.

B


117.

B

119.

C

121.

C

122.

C

123.

B

124.

C

125.

B

126.


C

127.

B

128.

B

129.

130. A

2

C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×