Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg 7 (655)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (149.51 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 6%.
B. 0, 8%.
C. 0, 5%.
D. 0, 7%.
Câu 2. Tính lim

x→+∞

x−2
x+3

2
C. − .
3

D. 1.

Câu 3. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối tứ diện đều.


B. Khối 20 mặt đều.

C. Khối bát diện đều.

D. Khối 12 mặt đều.

Câu 4. Khối lập phương thuộc loại
A. {5; 3}.
B. {4; 3}.

C. {3; 4}.

D. {3; 3}.

A. 2.

B. −3.

1
Câu 5. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
π
(−∞; +∞)
A. m ∈ (0; +∞).
B. m = 0.
C. m , 0.

! x3 −3mx2 +m
nghịch biến trên khoảng
D. m ∈ R.


Câu 6. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 6.

C. 8.

D. 4.

Câu 7. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.

C. Khối bát diện đều.

D. Khối 20 mặt đều.

Câu 8. √[2] Cho hình lâp phương√ABCD.A0 B0C 0 D0 cạnh a. √
Khoảng cách từ C đến AC√0 bằng
a 6
a 6
a 6
a 3
.
B.
.
C.
.
D.
.
A.

2
3
2
7
Câu 9. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; 2).
B. (0; +∞).

C. (−∞; 2).

Câu 10. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −2.
C. m = −3.

D. (−∞; 0) và (2; +∞).
D. m = −1.

[ = 60◦ , S O
Câu 11. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.√Khoảng cách từ O đến (S BC) bằng


2a 57
a 57
a 57
A.
.
B.

.
C. a 57.
D.
.
19
19
17
Câu 12. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp S .ABCD là

4a3
4a3 3
2a3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
d = 60◦ . Đường chéo
Câu 13. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0






4a3 6
2a3 6
a3 6
3
A. a 6.
B.
.
C.
.
D.
.
3
3
3
Trang 1/10 Mã đề 1


Câu 14. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. .
C. .
D. 4.

2
8
4
Câu 15. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.
B. lim f (x) = f (a).
x→a

x→a

C. lim+ f (x) = lim− f (x) = a.
x→a

x→a

x→a

D. f (x) có giới hạn hữu hạn khi x → a.

Câu 16. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; −3).
B. A0 (−3; 3; 1).
C. A0 (−3; 3; 3).
D. A0 (−3; −3; 3).
Câu 17. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. (4; 6, 5].
C. [6, 5; +∞).


D. (−∞; 6, 5).

Câu 18. Hàm số nào sau đây không có cực trị
1
x−2
.
C. y = x + .
D. y = x4 − 2x + 1.
A. y = x3 − 3x.
B. y =
2x + 1
x
0 0 0
Câu 19. [4] Cho lăng trụ ABC.A B C có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,

√ N, P bằng


14 3
20 3
C. 8 3.
D.
.
B. 6 3.
.
A.
3
3

1
Câu 20. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 0 < m ≤ 1.
C. 2 ≤ m ≤ 3.
D. 0 ≤ m ≤ 1.
!
1
1
1
+
+ ··· +
Câu 21. Tính lim
1.2 2.3
n(n + 1)
3
A. 2.
B. .
C. 1.
D. 0.
2


4n2 + 1 − n + 2
bằng
Câu 22. Tính lim
2n − 3
3
A. 2.

B. 1.
C. +∞.
D. .
2
x x
0
Câu 23. [2] Cho hàm số f (x) = 2 .5 . Giá trị của f (0) bằng
1
.
D. f 0 (0) = 1.
A. f 0 (0) = ln 10.
B. f 0 (0) = 10.
C. f 0 (0) =
ln 10
Câu 24. Tứ diện đều thuộc loại
A. {4; 3}.
B. {3; 3}.
C. {3; 4}.
D. {5; 3}.
Câu 25. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
A. 5.
B.
.
C. 68.

D. 34.
17
Câu 26. Dãy số
!n nào có giới hạn bằng3 0?
!n
−2
n − 3n
6
2
A. un =
.
B. un =
.
C. un = n − 4n.
D. un =
.
3
n+1
5
Câu 27. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −3 ≤ m ≤ 3.
B. m ≤ 3.
C. −2 ≤ m ≤ 2.
D. m ≥ 3.
Câu 28. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. 2.
C. Vô nghiệm.
D. 1.
Trang 2/10 Mã đề 1



d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 29. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là



a3 2
a3 3
a3 3
2
.
B. 2a 2.
C.
.
D.
.
A.
24
24
12
Câu 30. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1

B. k = .
C. k = .
D. k = .
A. k = .
15
9
6
18
Câu 31. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = loga 2.
B. log2 a =
.
C. log2 a =
.
D. log2 a = − loga 2.
loga 2
log2 a
Câu 32. Hàm số y =
A. x = 1.

x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 3.

C. x = 0.

D. x = 2.

q
2
Câu 33. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [−1; 0].
C. m ∈ [0; 1].
D. m ∈ [0; 2].
Câu 34. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a 3
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
8

24
24
48
Câu 35. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. Vô số.
B. 2.
C. 3.
D. 1.
1
Câu 36. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 3.
B. 1.
C. 4.
D. 2.
Câu 37. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
A. 1.
B. .
C. .
D. 3.
2
2
Câu 38. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.





5 13
A. 26.
B. 2.
C.
.
D. 2 13.
13
Câu 39. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. 7.
B. .
C.
.
D. 5.
2
2

Câu 40. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 64.
C. Vô số.
D. 63.
Câu 41. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng


a
a 3
a
A. .
B. a.
C.
.
D. .
3
2
2
Trang 3/10 Mã đề 1


Câu 42. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
B. Cả ba đáp án trên.

C. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
D. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
Câu 43. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 84cm3 .
C. 91cm3 .
D. 48cm3 .
Câu 44. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −5.
B. x = −8.
C. x = −2.


D. x = 0.

Câu 45. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 32π.
B. 8π.
C. V = 4π.
D. 16π.
x−3
bằng?
Câu 46. [1] Tính lim
x→3 x + 3
A. +∞.
B. 0.
C. 1.
D. −∞.
Câu 47. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
B. T = e + 3.
C. T = e + .
D. T = e + 1.
A. T = 4 + .
e
e
Câu 48. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 3.

C. 2.
D. 4.

Câu 49. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. Vơ nghiệm.
B. 1 nghiệm.
C. 2 nghiệm.
D. 3 nghiệm.
1
Câu 50. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 3.
B. 1.
C. 4.
D. 2.
Câu 51. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 5.
B. 1.
C. 2.

D. 3.

Câu 52. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt phẳng vng góc với (ABCD).
Thể tích khối chóp
√ S .ABCD là

3
3


a
a
3
2
a3 3
.
B. a3 3.
C.
.
D.
.
A.
4
2
2
Câu 53. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −3.
B. 0.
C. −6.
D. 3.
Câu 54. Khối đa diện đều loại {5; 3} có số cạnh
A. 8.
B. 12.

C. 30.

Câu 55. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Bốn mặt.
B. Một mặt.

C. Ba mặt.

D. 20.
D. Hai mặt.

Câu 56. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp là


A. 8, 16, 32.
B. 6, 12, 24.
C. 2, 4, 8.
D. 2 3, 4 3, 38.
1
Câu 57. Hàm số y = x + có giá trị cực đại là
x
A. 2.
B. −2.
C. 1.
D. −1.
Trang 4/10 Mã đề 1


Câu 58. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng 2n+1.
B. Số đỉnh của khối chóp bằng 2n + 1.
C. Số mặt của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh của khối chóp bằng 2n.
Câu 59. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng


cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
. Thể tích khối lăng trụ đã cho bằng
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
3


2 3
A. 2.
B.
.
C. 1.
D. 3.
3
Câu 60. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể
√ tích khối chóp S .ABCD là
3
10a 3
.
C. 40a3 .
D. 20a3 .
A. 10a3 .
B.
3
Câu 61. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac

3b + 2ac
3b + 3ac
A.
.
B.
.
C.
.
D.
.
c+1
c+2
c+3
c+2
Câu 62. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n lần.
B. 3n3 lần.
C. n3 lần.
D. n2 lần.
9t
Câu 63. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 2.
B. 0.
C. Vô số.
D. 1.
Câu 64. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng




a 2
a 2
.
B.
.
C. a 3.
A.
D. a 2.
2
3
Câu 65. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 5
a3 3
a3 5
.
B.
.
C.
.
D.
.
A.
4
6

12
12
Câu 66. Khối đa diện đều loại {3; 4} có số mặt
A. 12.
B. 10.
C. 8.
D. 6.
Câu 67. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lăng trụ.
B. Hình chóp.
C. Hình tam giác.

D. Hình lập phương.

2
Câu 68. Tính
√ mơ đun của số phức z√4biết (1 + 2i)z = 3 + 4i.

A. |z| = 5.
B. |z| = 5.
C. |z| = 5.
D. |z| = 2 5.
1
Câu 69. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 0 ≤ m ≤ 1.
C. 2 ≤ m ≤ 3.
D. 0 < m ≤ 1.
x−1 y z+1

Câu 70. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x − y + 2z − 1 = 0.
B. 2x + y − z = 0.
C. −x + 6y + 4z + 5 = 0.
D. 10x − 7y + 13z + 3 = 0.

Trang 5/10 Mã đề 1


Câu 71. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai mặt.
B. Ba mặt.
C. Bốn mặt.

D. Năm mặt.

Câu 72. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 13 năm.
B. 11 năm.
C. 12 năm.

D. 10 năm.
!2x−1
!2−x
3
3
Câu 73. Tập các số x thỏa mãn


5
5
A. [3; +∞).
B. [1; +∞).
C. (+∞; −∞).
D. (−∞; 1].
Câu 74. Khối đa diện đều loại {4; 3} có số mặt
A. 6.
B. 10.

C. 8.

D. 12.

Câu 75. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B. Số cạnh của khối chóp bằng số mặt của khối chóp.
C. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D. Số đỉnh của khối chóp bằng số mặt của khối chóp.
Câu 76. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số nghịch biến trên khoảng (−2; 1).

C. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
Câu 77. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD

√ là
3
3
3
3
8a 3
8a 3
4a 3
a 3
A.
.
B.
.
C.
.
D.
.
9
3
9
9
x+3
Câu 78. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng

x−m
(0; +∞)?
A. 3.
B. 1.
C. Vô số.
D. 2.
√3
Câu 79. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1
A. 3.
B. −3.
C. − .
D. .
3
3
x
9
Câu 80. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
C. −1.
D. 1.
A. 2.
B. .
2
1
Câu 81. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3


một đoạn có độ dài bằng 24.
A. −3 ≤ m ≤ 4.
B. m = 4.
C. m = −3.
D. m = −3, m = 4.
!
x+1
Câu 82. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
4035
2016
2017
A.
.
B.
.
C. 2017.
D.
.
2018
2017
2018
Câu 83. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 27.
B. 3.
C. 10.
D. 12.
Trang 6/10 Mã đề 1



Câu 84. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 5 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 6 cạnh, 6 mặt.
Câu 85. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
C. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
Câu 86. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (II) đúng.

B. Cả hai câu trên đúng. C. Chỉ có (I) đúng.

D. Cả hai câu trên sai.

[ = 60◦ , S O
Câu 87. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S

√ BC) bằng


a 57
a 57
2a 57
A. a 57.
B.
.
C.
.
D.
.
17
19
19
Câu 88. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có hai.
B. Khơng có.
C. Có vơ số.
D. Có một.
Câu 89. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
A. 2.
B. −2.
C. .
2
Câu 90. Bát diện đều thuộc loại
A. {3; 3}.

B. {3; 4}.
C. {4; 3}.

1
D. − .
2
D. {5; 3}.

Câu 91. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 6).
B. (2; 4; 4).
C. (1; 3; 2).
D. (2; 4; 3).
Câu 92. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5; 2}.
B. {3}.
C. {2}.
D. {5}.
Câu 93. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
20
40
10
20
C50
.(3)20
C50

.(3)10
C50
.(3)40
C50
.(3)30
A.
.
B.
.
C.
.
D.
.
450
450
450
450
Câu 94. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
A.
.
B. 2.
C. .
D. 1.
2
2
Câu 95. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.

C. Khối bát diện đều. D. Khối lập phương.
Câu 96. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba cạnh.
B. Năm cạnh.
C. Hai cạnh.

D. Bốn cạnh.
Trang 7/10 Mã đề 1


7n2 − 2n3 + 1
Câu 97. Tính lim 3
3n + 2n2 + 1
2
7
B. 1.
C. - .
D. 0.
A. .
3
3
1 − 2n
Câu 98. [1] Tính lim
bằng?
3n + 1
2
2
1
A. − .
B. .

C. .
D. 1.
3
3
3
Câu 99. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 11 năm.
C. 14 năm.
D. 12 năm.
Câu 100. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 3.
B. 0.
C. 2.
D. 1.
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
Câu 101. [3-1214d] Cho hàm số y =
x+2
tam giác
B thuộc (C), đoạn thẳng AB có độ dài bằng
√ đều ABI có hai đỉnh A, √

A. 6.
B. 2 2.
C. 2.
D. 2 3.

3a
Câu 102. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a
2a
a
a 2
A. .
B.
.
C. .
D.
.
4
3
3
3
Câu 103. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của
P = xy + x + 2y + 17
A. −15.
B. −12.
C. −9.
D. −5.
Câu 104. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số đồng biến trên khoảng (1; 2).
B. Hàm số nghịch biến trên khoảng (−∞; 0).

C. Hàm số nghịch biến trên khoảng (0; 1).
D. Hàm số nghịch biến trên khoảng (1; +∞).
Câu 105. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 10 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
1
bằng
Câu 106. [1] Giá trị của biểu thức log √3
10
1
1
A. 3.
B. − .
C. −3.
D. .
3
3
Câu 107. Cho hình chóp S .ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung
điểm cạnh√AB, biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là

2a3 3
a3
a3
4a3 3
A.
.
B.
.

C.
.
D.
.
3
3
6
3
Câu 108. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e4 .
B. 2e2 .
C. −2e2 .
D. −e2 .
Câu 109. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. Không tồn tại.
B. −5.
C. −7.

D. −3.

Câu 110. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 0.
B. 7.

D. 5.

C. 9.

Trang 8/10 Mã đề 1



Câu 111. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 8 năm.
B. 9 năm.
C. 10 năm.
D. 7 năm.
Câu 112. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 7 mặt.
C. 8 mặt.

D. 9 mặt.
2

x
Câu 113. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 1.
B. M = e, m = .
C. M = e, m = 0.
D. M = , m = 0.
e
e
Câu 114. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5

z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 2; −1).
B. ~u = (2; 1; 6).
C. ~u = (3; 4; −4).
D. ~u = (1; 0; 2).
Câu 115. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.016.000.
C. 102.424.000.
D. 102.423.000.
Câu 116. Khối đa diện đều loại {3; 5} có số cạnh
A. 8.
B. 20.

C. 30.

D. 12.

Câu 117.

[1233d-2] MệnhZđề nào sau đây
Z
Z sai?
[ f (x) + g(x)]dx =

A.
Z
B.
Z
C.
Z
D.

f (x)dx +

Z

g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z

[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.

Câu 118. Biểu thức nào sau đây khơng
√ 0 có nghĩa
−1

A. (−1) .
B. (− 2) .

C. 0−1 .

D.


−1.

−3

Câu 119. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối bát diện đều.
B. Khối tứ diện.
C. Khối lập phương.
D. Khối lăng trụ tam giác.
Câu 120. [1] Đạo hàm của hàm số y = 2 x là
1
1
A. y0 = 2 x . ln x.
B. y0 =
.
C. y0 = x
.
D. y0 = 2 x . ln 2.
ln 2
2 . ln x
Câu 121. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3

chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 25 m.
B. 1587 m.
C. 387 m.
D. 27 m.
Câu 122. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng



a 2
a 2
A. a 2.
B.
.
C.
.
D. 2a 2.
2
4
Trang 9/10 Mã đề 1


Câu 123. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 0.
B. 22016 .

C. 1.
D. e2016 .
Câu 124. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
d = 300 .
Câu 125. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V của
√ khối lăng trụ đã cho.

3

3a 3
a3 3
3
3
A. V = 3a 3.
B. V =
.
C. V = 6a .
D. V =
.
2
2
Câu 126. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 9.
B. 13.
C. 0.

D. Không tồn tại.
Câu 127. Khối chóp ngũ giác có số cạnh là
A. 10 cạnh.
B. 9 cạnh.

C. 11 cạnh.

D. 12 cạnh.

Câu 128. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
 π π
Câu 129. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 1.
B. 3.
C. −1.
D. 7.
Câu 130. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
D. .
A. 6.
B. 9.
C. .
2

2
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
D

1.
3.

B

4.

5.

B

6.

7. A
D

9.

D


2.
B
C

8.

B

10.

B

11. A

12. A

13. A

14.

C
C

15.

B

16.


17.

B

18.

19.

B

20. A
C

21.
23. A
25.

B
C

32. A
C

34.
36.

B

38.


C

40. A
42.

22.

B

24.

B

26. A

27. A
29.

B

28.

B

31.

B

33.


B

35.

B

37.

B

39.

B

41.

B

43. A

C

44.

B

46.

47.


B

48.

B
D
B

49.

C

50.

51.

C

52.

C

53. A

54.

C

55. A


56.

57.

B

59. A
61.

D

B

58.

D

60.

D

62.

63. A

C

64. A

65.


C

66.

67.

C

68.
70.

69. A
1

C
B
D


71.

B

72.

73.

B


74. A

75.

D

C
C

76.

77. A

78. A

79.

D

80.

D

81.

D

82.

D


83.

B

85. A
D

87.
89.

84.

B

86.

B

88. A
90.

B

91. A

92.

93. A


94.

95.
99.

C
D
B

105.

100.

B

102.

B

104.
106.

C

107.

C
B

108.


D

109. A
111.

B

98. A

B

101.
103.

D

96. A

B

97.

B

D

110.
B


C

112.

D
D

113.

C

114.

115.

C

116.

C

117.

C

118.

C

119.


120.

B

121.

D

122.

123. A
125.

B

D
B

124.

C

126.

C

127. A

128.


D

129. A

130.

D

2



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×