TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng
√
√
√
√
a 2
a 2
.
D.
.
A. a 3.
B. a 2.
C.
3
2
Câu 2. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 20.
B. 15, 36.
C. 24.
D. 3, 55.
Câu 3. Tứ diện đều thuộc loại
A. {5; 3}.
B. {4; 3}.
C. {3; 3}.
D. {3; 4}.
Câu 4. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt√bên (S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
3
3
3
3
8a 3
8a 3
4a 3
a 3
.
B.
.
C.
.
D.
.
A.
9
9
3
9
Câu 5. Khối đa diện đều loại {3; 4} có số đỉnh
A. 4.
B. 10.
C. 6.
D. 8.
!4x
!2−x
3
2
≤
là
Câu 6. Tập các số x thỏa mãn
3
2
"
!
"
!
#
#
2
2
2
2
A.
; +∞ .
B. −∞; .
C. − ; +∞ .
D. −∞; .
5
5
3
3
Câu 7. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S√B bằng
a
a
a 3
.
B. a.
C. .
D. .
A.
2
2
3
Câu 8. Trong các khẳng định sau, khẳng định nào sai?
A. Cả ba đáp án trên.
B. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
√
D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
Câu 9. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối lập phương.
C. Khối bát diện đều.
D. Khối tứ diện đều.
Câu 10. [3-12212d] Số nghiệm của phương trình 2 .3 − 2.2 − 3.3 + 6 = 0 là
A. 2.
B. 3.
C. 1.
D. Vô nghiệm.
x
9
Câu 11. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. 1.
B. .
C. 2.
D. −1.
2
x−2 x−1
x
x+1
Câu 12. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3).
B. (−3; +∞).
C. (−∞; −3].
D. [−3; +∞).
x−3
x−2
x−3
x−2
Trang 1/10 Mã đề 1
d = 120◦ .
Câu 13. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 2a.
B. 3a.
C.
.
D. 4a.
2
Z 1
6
2
3
. Tính
f (x)dx.
Câu 14. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
0
3x + 1
A. 6.
B. −1.
C. 4.
D. 2.
Câu 15. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của hình chóp S .ABCD với√mặt phẳng (AIC) có diện√tích là
√
11a2
a2 7
a2 5
a2 2
.
B.
.
C.
.
D.
.
A.
4
32
8
16
2
Câu 16. Tính
√4 mơ đun của số phức z biết (1 + 2i)z = 3 + 4i. √
A. |z| = 5.
B. |z| = 5.
C. |z| = 5.
√
D. |z| = 2 5.
Câu 17. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {5; 3}.
B. {4; 3}.
C. {3; 3}.
D. {3; 4}.
Câu 18. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. Vơ nghiệm.
B. 3 nghiệm.
C. 2 nghiệm.
D. 1 nghiệm.
Câu 19. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 1.
B. 6.
C. 2.
D. −1.
Câu 20. Hàm số f có nguyên hàm trên K nếu
A. f (x) xác định trên K.
C. f (x) có giá trị nhỏ nhất trên K.
B. f (x) liên tục trên K.
D. f (x) có giá trị lớn nhất trên K.
√
Câu 21. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. −3.
B. − .
C. .
D. 3.
3
3
Câu 22. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 46cm3 .
C. 72cm3 .
D. 27cm3 .
ln x p 2
1
Câu 23. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
1
8
1
A. .
B. .
C. .
D. .
3
3
9
9
Câu 24. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lăng trụ.
B. Hình tam giác.
C. Hình chóp.
D. Hình lập phương.
Câu 25. [1] Tập
! xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
A. − ; +∞ .
B.
; +∞ .
C. −∞; − .
2
2
2
!
1
D. −∞; .
2
Câu 26. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 27. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 + ln x.
B. y0 = x + ln x.
C. y0 = 1 − ln x.
D. y0 = ln x − 1.
Câu 28. Xét hai câu sau
Trang 2/10 Mã đề 1
Z
(I)
( f (x) + g(x))dx =
Z
f (x)dx +
Z
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (I) đúng.
B. Cả hai câu trên sai.
C. Chỉ có (II) đúng.
D. Cả hai câu trên đúng.
Câu 29. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai cạnh.
B. Năm cạnh.
C. Ba cạnh.
D. Bốn cạnh.
Câu 30. Khối đa diện đều loại {4; 3} có số đỉnh
A. 4.
B. 10.
D. 8.
C. 6.
Câu 31. Cho hàm số y = x − 3x + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 3.
B. 0.
C. −3.
D. −6.
q
2
Câu 32. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [0; 4].
C. m ∈ [0; 2].
D. m ∈ [−1; 0].
√
Câu 33. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị ngun dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vô số.
B. 64.
C. 63.
D. 62.
3
2
Câu 34. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
C. T = e + 1.
D. T = e + .
A. T = e + 3.
B. T = 4 + .
e
e
Câu 35. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 3, 5 triệu đồng.
B. 20, 128 triệu đồng. C. 70, 128 triệu đồng. D. 50, 7 triệu đồng.
Câu 36. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [1; +∞).
B. [−3; 1].
C. (−∞; −3].
D. [−1; 3].
√
Câu 37. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là
√
√
√
a3
a3 3
a3 3
3
A. a 3.
B.
.
C.
.
D.
.
4
3
12
Câu 38. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là
√
3
3
a
2a 3
a3
4a3 3
A.
.
B.
.
C.
.
D.
.
6
3
3
3
Câu 39. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. Vô nghiệm.
C. 1.
D. 2.
Câu 40. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 5.
B. 2.
C. 1.
D. 3.
Câu 41. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng
√
√
a 2
a 2
A.
.
B.
.
C. a 2.
D. 2a 2.
4
2
Trang 3/10 Mã đề 1
√
Câu 42. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. Vơ số.
C. 64.
D. 62.
1
Câu 43. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 0 ≤ m ≤ 1.
C. 0 < m ≤ 1.
D. 2 < m ≤ 3.
a
1
Câu 44. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 1.
B. 4.
C. 7.
D. 2.
2−n
bằng
Câu 45. Giá trị của giới hạn lim
n+1
A. −1.
B. 0.
C. 2.
D. 1.
Câu 46. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Hai đường phân giác y = x và y = −x của các góc tọa độ.
B. Trục ảo.
C. Trục thực.
D. Đường phân giác góc phần tư thứ nhất.
Câu 47. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là 4.
B. Phần thực là 4, phần ảo là 1.
C. Phần thực là 4, phần ảo là −1.
D. Phần thực là −1, phần ảo là −4.
Câu 48. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 91cm3 .
B. 48cm3 .
C. 64cm3 .
D. 84cm3 .
Câu 49. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
5a
a
2a
8a
A.
.
B. .
C.
.
D.
.
9
9
9
9
Câu 50. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. 2.
B. .
C. − .
D. −2.
2
2
x+1
Câu 51. Tính lim
bằng
x→+∞ 4x + 3
1
1
B. 3.
C. .
D. 1.
A. .
3
4
Câu 52. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 5 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 6 cạnh, 6 mặt.
2
Câu 53. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 5.
B. 7.
C. 6.
D. 8.
Câu 54. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
B. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
C. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
0
D. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Trang 4/10 Mã đề 1
Câu 55. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 8 m.
B. 24 m.
C. 12 m.
D. 16 m.
log7 16
Câu 56. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. −2.
B. −4.
C. 2.
D. 4.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 57. [3-12217d] Cho hàm số y = ln
x+1
0
y
0
y
A. xy = −e − 1.
B. xy = e − 1.
C. xy0 = −ey + 1.
D. xy0 = ey + 1.
Câu 58. Khối đa diện đều loại {3; 5} có số mặt
A. 8.
B. 30.
C. 20.
D. 12.
Câu 59. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
.
C. f 0 (0) = 10.
D. f 0 (0) = ln 10.
A. f 0 (0) = 1.
B. f 0 (0) =
ln 10
Câu 60. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a =
.
B. log2 a = − loga 2.
C. log2 a = loga 2.
D. log2 a =
.
loga 2
log2 a
d = 30◦ , biết S BC là tam giác đều
Câu 61. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
9
16
13
26
π
Câu 62. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3
√
trị của biểu thức T = a + b 3.
√
√
C. T = 4.
D. T = 3 3 + 1.
A. T = 2.
B. T = 2 3.
Câu 63. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tam giác và một hình chóp tứ giác.
B. Một hình chóp tứ giác và một hình chóp ngũ giác.
C. Hai hình chóp tứ giác.
D. Hai hình chóp tam giác.
Câu 64. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 10 mặt.
C. 4 mặt.
D. 8 mặt.
Câu 65. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 2.
B. 1.
C. 3.
D. 7.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 66. [3-12217d] Cho hàm số y = ln
x+1
0
y
0
y
A. xy = −e − 1.
B. xy = −e + 1.
C. xy0 = ey − 1.
D. xy0 = ey + 1.
Câu 67. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −e2 .
B. −2e2 .
C. 2e4 .
D. 2e2 .
Câu 68. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 11 năm.
C. 12 năm.
D. 13 năm.
Câu 69. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 3.
C. 2.
D. 1.
Trang 5/10 Mã đề 1
Câu 70. Tính lim
x→2
A. 2.
x+2
bằng?
x
B. 1.
C. 3.
D. 0.
Câu 71. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim− f (x) = f (b).
B. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim− f (x) = f (a) và lim+ f (x) = f (b).
D. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a
x→a
x→b
x→b
Z 3
a
a
x
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
Câu 72. Cho I =
√
d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 4.
B. P = −2.
C. P = 16.
D. P = 28.
Câu 73. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 4.
B. ln 14.
C. ln 12.
D. ln 10.
Câu 74. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −1.
B. m = −3.
C. m = −2.
D. m = 0.
Câu 75. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là 4.
B. Phần thực là −3, phần ảo là 4.
C. Phần thực là −3, phần ảo là −4.
D. Phần thực là 3, phần ảo là −4.
Câu 76. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 + 2e
1 − 2e
1 − 2e
.
B. m =
.
C. m =
.
D. m =
.
A. m =
4 − 2e
4e + 2
4 − 2e
4e + 2
Câu 77. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 20 triệu đồng.
B. 2, 22 triệu đồng.
C. 2, 25 triệu đồng.
D. 3, 03 triệu đồng.
Câu 78. Mệnh đề nào sau đây sai?
A. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
B. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Z
C. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
!0
Z
D.
f (x)dx = f (x).
f (x)dx = F(x) + C.
Câu 79. [2]√Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 2
B. m = ± 3.
C. m = ±1.
D. m = ±3.
A. m = ± 2.
x−1 y z+1
Câu 80. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =
và
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x + y − z = 0.
B. 10x − 7y + 13z + 3 = 0.
C. 2x − y + 2z − 1 = 0.
D. −x + 6y + 4z + 5 = 0.
Câu 81. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (−∞; +∞).
B. [−1; 2).
C. (1; 2).
D. [1; 2].
Câu 82. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
Trang 6/10 Mã đề 1
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (III).
B. (I) và (II).
Câu 83. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 2).
B. (0; 2).
C. (II) và (III).
D. Cả ba mệnh đề.
C. (0; +∞).
D. (−∞; 0) và (2; +∞).
Câu 84. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
√
√
√
√
a 6
A. a 3.
.
D. 2a 6.
B. a 6.
C.
2
Câu 85. Khối đa diện đều loại {3; 5} có số đỉnh
A. 12.
B. 20.
C. 8.
D. 30.
x
Câu 86. Tính diện tích hình phẳng
√ giới hạn bởi các đường y = xe , y = 0, x = 1.
3
3
1
B.
.
C. 1.
D. .
A. .
2
2
2
Câu 87. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng
√
√
√
c a2 + b2
abc b2 + c2
b a2 + c2
a b2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 88. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 22.
B. S = 24.
m
ln2 x
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
C. S = 135.
D. S = 32.
d = 60◦ . Đường chéo
Câu 89. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
0
0 0
0 0
◦
BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
√
4a3 6
a3 6
2a3 6
3
A.
.
B.
.
C. a 6.
D.
.
3
3
3
2n − 3
Câu 90. Tính lim 2
bằng
2n + 3n + 1
A. −∞.
B. +∞.
C. 1.
D. 0.
Z 1
Câu 91. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
1
A. .
4
0
B. 0.
C. 1.
D.
1
.
2
Câu 92. Cho hàm số y = x3 − 2x2 + x + 1. !Mệnh đề nào dưới đây đúng?
!
1
1
A. Hàm số nghịch biến trên khoảng ; 1 .
B. Hàm số đồng biến trên khoảng ; 1 .
3
3
!
1
D. Hàm số nghịch biến trên khoảng (1; +∞).
C. Hàm số nghịch biến trên khoảng −∞; .
3
Câu 93. Khối đa diện đều loại {5; 3} có số mặt
A. 20.
B. 30.
C. 8.
D. 12.
Trang 7/10 Mã đề 1
Câu 94. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1134 m.
B. 6510 m.
C. 2400 m.
D. 1202 m.
Câu 95. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 7 mặt.
C. 6 mặt.
D. 8 mặt.
Câu 96. Biểu thức nào sau đây √
khơng có nghĩa
−3
−1
A. 0 .
B.
−1.
√
D. (− 2)0 .
C. (−1)−1 .
Câu 97. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
ab
1
1
.
B. √
.
C. 2
.
A. √
.
D. √
2
a +b
2 a2 + b2
a2 + b2
a2 + b2
Câu 98. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
A. 2.
B. 1.
C.
.
D. .
2
2
Câu 99. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.
B. lim f (x) = f (a).
x→a
x→a
x→a
C. lim+ f (x) = lim− f (x) = a.
D. f (x) có giới hạn hữu hạn khi x → a.
x→a
x→a
Câu 100. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {4; 3}.
B. {5; 3}.
C. {3; 5}.
D. {3; 4}.
Câu 101. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x + x − y − 12 = 0. Tìm giá trị nhỏ nhất của
P = xy + x + 2y + 17
A. −15.
B. −12.
C. −9.
D. −5.
1
Câu 102. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 0 ≤ m ≤ 1.
C. 0 < m ≤ 1.
D. 2 ≤ m ≤ 3.
[ = 60◦ , S O
Câu 103. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S BC) bằng
√
√
2a 57
a 57
a 57
A.
.
B.
.
C. a 57.
D.
.
19
17
19
Câu 104. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. e2016 .
B. 22016 .
C. 1.
D. 0.
2
Câu 105. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n2 lần.
B. 3n3 lần.
C. n lần.
D. n3 lần.
Câu 106. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m < .
C. m ≥ .
D. m > .
4
4
4
4
0 0 0 0
Câu 107.
a. Khoảng cách từ C đến √
AC 0 bằng
√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh √
a 6
a 6
a 6
a 3
A.
.
B.
.
C.
.
D.
.
7
2
3
2
√
Câu 108. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
√
1
A. 5.
B. .
C. 5.
D. 25.
5
Câu 109. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 4).
B. (1; 3; 2).
C. (2; 4; 6).
D. (2; 4; 3).
Trang 8/10 Mã đề 1
Câu 110. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
B. 2e.
C. 2e + 1.
A. .
e
D. 3.
Câu 111. [4-1246d] Trong tất cả
√ các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn√nhất của |z|
A. 2.
B. 5.
C. 1.
D. 3.
√
√
Câu 112. Phần thực
√ và phần ảo của số phức
√ z = 2 − 1 − 3i lần lượt√l
√
A. Phần thực là 2 −√1, phần ảo là − √3.
B. Phần thực là √2 − 1, phần ảo là √3.
C. Phần thực là 1 − 2, phần ảo là − 3.
D. Phần thực là 2, phần ảo là 1 − 3.
Câu 113. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m ≤ 3.
C. m ≥ 3.
D. m < 3.
1 − 2n
Câu 114. [1] Tính lim
bằng?
3n + 1
2
1
2
B. .
C. 1.
D. .
A. − .
3
3
3
Câu 115. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 4 lần.
B. Tăng gấp 8 lần.
C. Tăng gấp 6 lần.
D. Tăng gấp đôi.
Câu 116. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
0 0
(AB0C) và
√ (A C D) bằng
√
√
√
2a 3
a 3
a 3
A.
C.
.
B. a 3.
.
D.
.
2
2
3
Câu 117. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m√2 + 1)2 x trên [0; 1] bằng 8√
D. m = ± 2.
A. m = ±1.
B. m = ±3.
C. m = ± 3.
[ = 60◦ , S A ⊥ (ABCD).
Câu 118. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối chóp S .ABCD là
√
3
3
3
√
a 2
a 3
a
2
.
B.
.
C. a3 3.
.
A.
D.
6
4
12
Câu 119. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.
C. Khối 20 mặt đều.
D. Khối bát diện đều.
Câu 120. Khối đa diện đều loại {3; 3} có số đỉnh
A. 4.
B. 2.
C. 3.
D. 5.
Câu 121. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = 2.
C. y(−2) = −18.
D. y(−2) = 6.
Câu 122. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 14 năm.
B. 12 năm.
C. 10 năm.
D. 11 năm.
Câu 123. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
Thể tích khối chóp S .ABC √là
√ với đáy và S C = a 3.3 √
√
3
a 6
a 3
2a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
12
4
9
2
Trang 9/10 Mã đề 1
Câu 124. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
Câu 125. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng số mặt của khối chóp.
B. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
C. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
D. Số đỉnh của khối chóp bằng số mặt của khối chóp.
Câu 126. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
= .
B. lim [ f (x) + g(x)] = a + b.
A. lim
x→+∞
x→+∞ g(x)
b
C. lim [ f (x)g(x)] = ab.
D. lim [ f (x) − g(x)] = a − b.
x→+∞
x→+∞
!
1
1
1
Câu 127. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
A. +∞.
B. .
C. 2.
D. .
2
2
Câu 128. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x y z−1
x−2 y+2 z−3
A. = =
.
B.
=
=
.
1 1
1
2
2
2
x−2 y−2 z−3
x y−2 z−3
C.
=
=
.
D. =
=
.
2
3
4
2
3
−1
π π
3
Câu 129. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. −1.
B. 1.
C. 3.
D. 7.
Câu 130. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 0.
B. 7.
C. 9.
D. 5.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
D
2.
B
B
3.
C
4.
5.
C
6.
7.
B
9.
B
8.
D
10. A
11. A
12.
C
C
13.
C
14.
15.
C
16. A
17. A
19.
C
C
18.
20.
B
B
D
21.
C
22.
23.
C
24.
B
25. A
26.
B
27. A
28.
D
29.
C
30.
D
31.
C
32.
D
33.
35.
D
B
37.
36.
D
40.
D
C
49.
C
48.
D
51.
B
D
B
D
D
52.
B
54.
B
56.
B
58.
59.
C
50.
C
55.
63.
D
46. A
47.
61.
B
44.
45. A
57.
D
42.
B
43.
53.
B
38.
C
39.
41.
34. A
C
60. A
62.
C
D
C
64. A
65. A
66.
C
67. A
68.
C
1
69.
D
70. A
72. A
71. A
73.
B
74.
75.
B
76.
77.
B
78. A
79.
C
81. A
D
83.
85. A
C
D
80.
B
82.
B
84.
B
C
86.
D
87.
89.
C
88.
D
90.
D
91.
D
92. A
93.
D
94.
95. A
B
96. A
97.
B
98. A
99.
B
100.
101.
B
102. A
C
104.
103. A
D
105.
D
106. A
107.
C
108.
D
109.
C
110.
D
111. A
112. A
113.
115.
C
116.
B
117.
119.
114. A
D
118.
B
121.
B
120. A
122.
C
123. A
D
124. A
125.
D
127.
129.
D
126. A
128. A
C
B
130.
2
C