Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg 1 (315)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (149.54 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 3 lần.
B. Tăng gấp 27 lần.
C. Tăng gấp 9 lần.
D. Tăng gấp 18 lần.
Câu 2. Khối lập phương thuộc loại
A. {3; 3}.
B. {3; 4}.
!2x−1
!2−x
3
3
Câu 3. Tập các số x thỏa mãn


5
5
A. [1; +∞).
B. [3; +∞).

C. {4; 3}.



D. {5; 3}.

C. (−∞; 1].

D. (+∞; −∞).

Câu 4. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 5. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. e.
B. 1.
C. 4 − 2 ln 2.

D. −2 + 2 ln 2.

Câu 6. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá trị
của hàm số tại x = −2.
A. y(−2) = 6.
B. y(−2) = 2.
C. y(−2) = −18.
D. y(−2) = 22.
Câu 7. Tứ diện đều thuộc loại
A. {3; 3}.
B. {3; 4}.

C. {4; 3}.

D. {5; 3}.
1
Câu 8. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.
A. −3 ≤ m ≤ 4.
B. m = 4.
C. m = −3.
D. m = −3, m = 4.
mx − 4
Câu 9. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 67.
B. 26.
C. 45.
D. 34.
q
2
Câu 10. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [−1; 0].
C. m ∈ [0; 1].
D. m ∈ [0; 2].
Câu 11.
√ [4-1246d] Trong tất cả các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất của |z|

A. 5.
B. 1.
C. 3.
D. 2.
Câu 12. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Giảm đi n lần.
B. Tăng lên (n − 1) lần. C. Tăng lên n lần.
D. Không thay đổi.
Câu 13. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 46cm3 .
B. 64cm3 .
C. 27cm3 .
D. 72cm3 .


4n2 + 1 − n + 2
Câu 14. Tính lim
bằng
2n − 3
3
A. +∞.
B. 1.
C. .
D. 2.
2
Trang 1/10 Mã đề 1



Câu 15. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
1
A. .
B. 2.
C. − .
2
2
Câu 16. Khối đa diện đều loại {3; 5} có số mặt
A. 12.
B. 20.
C. 8.

D. −2.
D. 30.

Câu 17. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a

a3 15
a3 15
a3
a3 5
A.
.
B.
.
C.
.
D.

.
5
25
3
25
Câu 18. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD

√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng


a 2
a 2
.
B. 2a 2.
.
C. a 2.
D.
A.
2
4
Câu 19. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 0, 8.
B. −7, 2.
C. 72.
D. 7, 2.
1 − xy
Câu 20. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất

x + 2y
Pmin của P = x√+ y.



9 11 − 19
2 11 − 3
18 11 − 29
9 11 + 19
. B. Pmin =
. C. Pmin =
.
D. Pmin =
.
A. Pmin =
9
9
3
21
Câu 21. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.
C. Khối 20 mặt đều.
D. Khối bát diện đều.
Câu 22. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
B. Số cạnh của khối chóp bằng số mặt của khối chóp.
C. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
D. Số đỉnh của khối chóp bằng số mặt của khối chóp.
Z 2

ln(x + 1)
Câu 23. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. −3.
B. 1.
C. 0.
Câu 24.
có nghĩa
√ Biểu thức nào sau đây khơng
−3
−1
A.
−1.
B. (−1) .
x+2
Câu 25. Tính lim
bằng?
x→2
x
A. 3.
B. 1.

D. 3.

C. 0−1 .


D. (− 2)0 .


C. 2.

D. 0.

Câu 26. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m , 0.
B. m < 0.
C. m > 0.

D. m = 0.
x+2
đồng biến trên khoảng
Câu 27. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x + 5m
(−∞; −10)?
A. 3.
B. Vô số.
C. 2.
D. 1.
!
3n + 2
2
Câu 28. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 4.
B. 3.
C. 5.

D. 2.
Trang 2/10 Mã đề 1


Câu 29. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 3 mặt.

D. 4 mặt.

Câu 30. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −3.
B. m = −2.
C. m = 0.
D. m = −1.



x = 1 + 3t




Câu 31. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua





z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là











x
=
1
+
3t
x
=
1
+
7t
x
=
−1
+
2t

x = −1 + 2t
















A. 
B. 
.
C. 
y = 1 + 4t .
y=1+t
y = −10 + 11t . D. 
y = −10 + 11t .

















z = 1 − 5t
z = 1 + 5t
z = 6 − 5t
z = −6 − 5t
Câu 32. Dãy số nào sau đây có giới hạn là 0?
1 − 2n
n2 + n + 1
.
B.
u
=
.
A. un =
n
(n + 1)2
5n + n2

C. un =


n2 − 3n
.
n2

D. un =

n2 − 2
.
5n − 3n2

Câu 33. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
B.
.
C.
.
D. a3 .
A.
12
24
6
Câu 34. Khối đa diện đều loại {3; 3} có số cạnh
A. 4.
B. 8.
C. 6.

D. 5.
Câu 35. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; 0) và (1; +∞). B. (−1; 0).
C. (0; 1).
D. (−∞; −1) và (0; +∞).
Câu 36. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 4 mặt.
C. 5 mặt.
Câu 37. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 + 2e
1 + 2e
A. m =
.
B. m =
.
C. m =
.
4 − 2e
4e + 2
4 − 2e

D. 6 mặt.
D. m =

1 − 2e
.
4e + 2


Câu 38. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e4 .
B. −e2 .
C. 2e2 .
D. −2e2 .
Câu 39. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = loga 2.
B. log2 a =
.
C. log2 a = − loga 2.
D. log2 a =
.
loga 2
log2 a
Câu 40. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 13.
C. 9.
Câu 41. Khối đa diện đều loại {3; 3} có số đỉnh
A. 4.
B. 2.

D. 0.

C. 3.

D. 5.
x+3

Câu 42. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 2.
B. Vô số.
C. 3.
D. 1.
Câu 43. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 8 mặt.
C. 10 mặt.

D. 4 mặt.
Trang 3/10 Mã đề 1


Câu 44. [1] Biết log6
A. 4.



a = 2 thì log6 a bằng
B. 36.

Câu 45. Khối đa diện đều loại {5; 3} có số mặt
A. 8.
B. 20.
2
x −9

Câu 46. Tính lim
x→3 x − 3
A. +∞.
B. −3.

C. 6.

D. 108.

C. 30.

D. 12.

C. 3.

D. 6.

Câu 47. Cho z là nghiệm của phương trình√ x + x + 1 = 0. Tính P =√z + 2z − z
−1 − i 3
−1 + i 3
A. P = 2i.
B. P =
.
C. P =
.
D. P = 2.
2
2
Câu 48. Hàm số nào sau đây khơng có cực trị
1

x−2
A. y = x + .
B. y =
.
C. y = x3 − 3x.
D. y = x4 − 2x + 1.
x
2x + 1
Câu 49. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
2

4

3

(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (II) và (III).

B. (I) và (II).

C. Cả ba mệnh đề.

D. (I) và (III).

Câu 50. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P hoặc d ⊥ P.

B. d ⊥ P.
C. d nằm trên P.
D. d song song với (P).
1
2mx + 1
Câu 51. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 1.
B. 0.
C. −5.
D. −2.
Câu 52. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. (4; 6, 5].
C. [6, 5; +∞).

D. (−∞; 6, 5).

Câu 53. [2] Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8 √
C. m = ±1.
D. m = ± 2.
A. m = ±3.
B. m = ± 3.
x+1
Câu 54. Tính lim
bằng
x→−∞ 6x − 2
1

1
1
A. .
B. .
C. .
D. 1.
2
3
6
Câu 55. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tứ giác.
B. Một khối chóp tam giác, một khối chóp ngữ giác.
C. Hai khối chóp tam giác.
D. Một khối chóp tam giác, một khối chóp tứ giác.
Câu 56. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (1; +∞).
B. (−∞; 1).
C. (−1; 1).
7n2 − 2n3 + 1
Câu 57. Tính lim 3
3n + 2n2 + 1
2
A. - .
B. 0.
3

C. 1.

D. (−∞; −1).


D.

7
.
3
Trang 4/10 Mã đề 1


Câu 58. Giá trị của giới hạn lim
A. −1.

B. 1.

2−n
bằng
n+1

C. 2.

D. 0.

Câu 59. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có một.
B. Có hai.
C. Khơng có.
D. Có vơ số.
!
!
!

4x
1
2
2016
Câu 60. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 1008.
B. T = 2016.
C. T = 2017.
D. T =
.
2017
Câu 61. Khối chóp ngũ giác có số cạnh là
A. 9 cạnh.
B. 10 cạnh.

C. 12 cạnh.

Câu 62. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 2.

B. 1.


C. 4.

D. 11 cạnh.
1
3|x−1|

= 3m − 2 có nghiệm duy

D. 3.

Câu 63. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5; 2}.
B. {2}.
C. {3}.
D. {5}.
Câu 64. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
1
1
ab
.
B. √
.
C. √
.
D. √
.
A. 2

2
a +b
a2 + b2
a2 + b2
2 a2 + b2
Câu 65. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m > .
C. m ≤ .
D. m < .
4
4
4
4
Câu 66. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = 0.
B. x = −2.
C. x = −5.
D. x = −8.
x−1 y z+1
Câu 67. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =

2
1
−1

mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. −x + 6y + 4z + 5 = 0.
B. 10x − 7y + 13z + 3 = 0.
C. 2x − y + 2z − 1 = 0.
D. 2x + y − z = 0.
Câu 68. Khối đa diện đều loại {3; 5} có số cạnh
A. 30.
B. 20.

C. 8.

D. 12.

Câu 69. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 70. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số nghịch biến trên khoảng (−2; 1).
C. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 71. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. Vơ nghiệm.
B. 1 nghiệm.
C. 3 nghiệm.

D. 2 nghiệm.

Trang 5/10 Mã đề 1


Câu 72. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là


a3 3
2a3 3
a3 3
.
B.
.
C.
.
D. a3 3.
A.
3
6
3
Câu 73. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
C. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 74. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
B. Hàm số đồng biến trên khoảng (1; 2).
C. Hàm số nghịch biến trên khoảng (−∞; 0).

D. Hàm số nghịch biến trên khoảng (0; 1).
Câu 75. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + .
B. T = 4 + .
C. T = e + 1.
D. T = e + 3.
e
e
3

Câu 76. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e5 .
B. e3 .
C. e2 .

D. e.

Câu 77. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 1.
B. 2.
C. −1.

D. 6.

Câu 78. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α


A. aα+β = aα .aβ .
B. aα bα = (ab)α .
C. β = a β .
D. aαβ = (aα )β .
a
Câu 79. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. Vô nghiệm.
C. 3.
D. 1.
12 + 22 + · · · + n2
Câu 80. [3-1133d] Tính lim
n3
2
A. .
B. +∞.
C. 0.
3
Câu 81. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
A. y = log √2 x.
B. y = log π4 x.
C. y = log 41 x.

D.

D. y = loga x trong đó a =

Câu 82. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Tứ diện đều.
B. Nhị thập diện đều. C. Bát diện đều.

x−2
Câu 83. Tính lim
x→+∞ x + 3
2
A. −3.
B. 1.
C. − .
3

1
.
3


3 − 2.

D. Thập nhị diện đều.

D. 2.

2

Câu 84. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
2
1
A. 3 .
B. √ .
C. 3 .
e

2e
2 e

D.

1
.
e2

Câu 85. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
Trang 6/10 Mã đề 1


Câu 86. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n3 lần.
B. 3n3 lần.
C. n lần.
D. n2 lần.
Câu 87. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 6.

C. 8.

D. 4.


x2

Câu 88. [2] Tổng các nghiệm của phương trình 3 x−1 .2 = 8.4 x−2 là
A. 3 − log2 3.
B. 1 − log3 2.
C. 1 − log2 3.

D. 2 − log2 3.

Câu 89. [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ
√ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
C. 10.
D. 2.
A. 1.
B. 2.
Câu 90. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
A. 68.
B. 5.
C. 34.
D.
.
17
x3 − 1
Câu 91. Tính lim

x→1 x − 1
A. 0.
B. 3.
C. +∞.
D. −∞.
Câu 92. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 0.
B. 7.

C. 5.

D. 9.

Câu 93. Khối đa diện đều loại {3; 4} có số cạnh
A. 10.
B. 8.

C. 12.

D. 6.

Câu 94. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Khơng có câu nào B. Câu (II) sai.
sai.


C. Câu (I) sai.

D. Câu (III) sai.

2

Câu 95. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 5.
B. 2.
C. 4.
D. 3.

2
Câu 96. [4-1228d] Cho phương trình (2 log3 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 64.
C. 62.
D. Vô số.
Câu 97. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R \ {1; 2}.
B. D = (−2; 1).
C. D = R.
1
Câu 98. Hàm số y = x + có giá trị cực đại là
x
A. 1.
B. −2.
C. −1.
5

Câu 99. Tính lim
n+3
A. 1.
B. 2.
C. 0.
2

D. D = [2; 1].
D. 2.
D. 3.

Câu 100. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc
60◦ . Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n.
Thể tích khối
√ chóp S .ABMN là 3 √


3
4a 3
5a 3
2a3 3
a3 3
A.
.
B.
.
C.
.
D.
.

3
3
3
2
Trang 7/10 Mã đề 1


Câu 101. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 20 .(3)20
C 40 .(3)10
C 20 .(3)30
C 10 .(3)40
B. 50 50 .
C. 50 50 .
D. 50 50 .
A. 50 50 .
4
4
4
4
2
Câu 102. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x + x − y − 12 = 0. Tìm giá trị nhỏ nhất của
P = xy + x + 2y + 17
A. −15.
B. −12.
C. −5.
D. −9.

log2 240 log2 15

+ log2 1 bằng
Câu 103. [1-c] Giá trị biểu thức
log3,75 2 log60 2
A. 1.
B. 3.
C. −8.
D. 4.

2
Câu 104. Xác định phần ảo của √
số phức z = ( 2 + 3i)

C. −6 2.
D. −7.
A. 7.
B. 6 2.
Câu 105. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
5
13
23
9
A. − .
B.
.
C. −
.
D.

.
16
100
100
25
Câu 106. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
a 6
a3 6
a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
48
8
24
24
Câu 107. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {0}.
B. D = (0; +∞).

C. D = R \ {1}.
D. D = R.
log 2x
Câu 108. [1229d] Đạo hàm của hàm số y =

x2
1 − 4 ln 2x
1
1 − 2 log 2x
1 − 2 ln 2x
.
B. y0 =
.
C. y0 = 3
.
D. y0 =
.
A. y0 = 3
3
x ln 10
2x ln 10
2x ln 10
x3
8
Câu 109. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 96.
B. 82.
C. 64.
D. 81.

Câu 110. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0)
lần lượt là hình
! chiếu của B, C lên các !cạnh AC, AB. Tọa độ hình chiếu của A lên BC là !
5
8
7
; 0; 0 .
; 0; 0 .
; 0; 0 .
A.
B.
C. (2; 0; 0).
D.
3
3
3
log7 16
Câu 111. [1-c] Giá trị của biểu thức
bằng
15
log7 15 − log7 30
A. 4.
B. −2.
C. 2.
D. −4.
Câu 112. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
.
B. .

C. 7.
D. 5.
A.
2
2
Câu 113. Mệnh đề nào sau đây sai?
A. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
!0
Z
B.
f (x)dx = f (x).
Z
C. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
D. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Trang 8/10 Mã đề 1


Câu 114. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình tam giác.
B. Hình lăng trụ.
C. Hình chóp.

D. Hình lập phương.

Câu 115. [2] Ơng A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn
nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ.

120.(1, 12)3
(1, 01)3
triệu.
B.
m
=
triệu.
A. m =
(1, 01)3 − 1
(1, 12)3 − 1
100.(1, 01)3
100.1, 03
triệu.
D. m =
triệu.
C. m =
3
3
Câu 116. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi
G la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
15

18
6
9
2
Câu 117. Tổng diện tích các mặt của một khối lập phương bằng 96cm . Thể tích của khối lập phương đó
là:
A. 84cm3 .
B. 48cm3 .
C. 91cm3 .
D. 64cm3 .
Câu 118. Thể tích của khối lăng
√ trụ tam giác đều có cạnh√bằng 1 là:
3
3
3
B.
.
C.
.
A. .
4
4
2


3
D.
.
12
! x3 −3mx2 +m

1
Câu 119. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ R.
B. m = 0.
C. m ∈ (0; +∞).
D. m , 0.
Câu 120. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
B. − .
C. − 2 .
A. − .
2e
e
e
x2 −3x+8
Câu 121. [2] Tổng các nghiệm của phương trình 3
= 92x−1 là
A. 7.
B. 6.
C. 8.

D. −e.
D. 5.

d = 300 .

Câu 122. Cho khối lăng trụ đứng ABC.A B C có đáy ABC là tam giác vng tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V của
√ khối lăng trụ đã cho.

3

a3 3
3a 3
3
3
.
C. V = 3a 3.
D. V =
.
A. V = 6a .
B. V =
2
2
Câu 123. Khối đa diện đều loại {3; 4} có số mặt
A. 8.
B. 12.
C. 10.
D. 6.
0

0

0

Câu 124. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?

A. 6 đỉnh, 9 cạnh, 6 mặt. B. 5 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 6 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 5 mặt.
Câu 125.
Trong các khẳng định sau, khẳng định nào sai?Z
Z
0dx = C, C là hằng số.

A.
Z
C.

dx = x + C, C là hằng số.

1
dx = ln |x| + C, C là hằng số.
Z x
xα+1
α
D.
x dx =
+ C, C là hằng số.
α+1
B.


Câu 126. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là



πa3 3
πa3 3
πa3 3
πa3 6
A. V =
.
B. V =
.
C. V =
.
D. V =
.
3
6
2
6
Trang 9/10 Mã đề 1


Câu 127. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 10.
B. ln 4.
C. ln 14.
D. ln 12.
Câu 128. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 10 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 129. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương

ứng sẽ:
A. Tăng gấp đôi.
B. Tăng gấp 4 lần.
C. Tăng gấp 8 lần.
D. Tăng gấp 6 lần.
Câu 130. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là 4.
B. Phần thực là −1, phần ảo là −4.
C. Phần thực là 4, phần ảo là 1.
D. Phần thực là 4, phần ảo là −1.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B

2.

3. A

4.

5. A


6.

7. A

8.

9.

D

10.

11.

D

12. A

C

13.
15.

D

D
B

16.


B

18. A

19.

B

20.

21.

B

22.

C
D
C

24.

25.

C

26. A

27.


C

28. A

30.

B

31.

32.

B

33. A
C

34.

35.

36.

B

37.

38.

B


39.

40.

D

42.

B
D
B

43. A

C

46.

C

41. A

44. A
D
B

50. A
52.


C

B

B

48.

D

14.

17.

23. A

C

B

45.

D

47.

D

49.


B

51.

B

53.

D
D

54.

C

55.

56.

C

57. A

58. A

59.

B

60. A


61.

B

62.

B

63.

64.

B

65.

66.

D

67.

68. A

69. A
1

D
C

B


70.

71.

D

72. A

D

73.
D

74.
76. A
78.

C

75.

D

77.

D


79.

D

80.

D

81. A

82.

D

83.

84.

D

85. A

86. A

C

B

87.


C

88.

D

89. A

90.

D

91.

92.

D

93.

C

95.

C

97.

C


99.

C

94. A
C

96.
98.

B

100.

D

101.

B

B

102.

B

103.

C


104.

B

105.

C

106.

C

108. A

107.

D

109.

D
D

110.

B

111.

112.


B

113. A

114. A

115. A
D

117.
119.

118.

B

B

120. A

121. A

122.

123. A

124.

125.


D

B
D

126. A

127.

C

128.

129.

C

130.

2

B
D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×