Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg 1 (144)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (154.34 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 10 mặt.
C. 4 mặt.

D. 8 mặt.

Câu 2. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
B.
.
C. 5.
D. 7.
A. .
2
2
2n + 1
Câu 3. Tính giới hạn lim
3n + 2
1
3


2
B. .
C. .
D. 0.
A. .
3
2
2
Câu 4. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −8.
B. x = −2.
C. x = 0.
D. x = −5.
Câu 5. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m < .
C. m > .
D. m ≥ .
4
4
4
4
Câu 6. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng




a 2
a 2
D. a 3.
A.
.
B.
.
C. a 2.
2
3
Câu 7. [1] Đạo hàm của hàm số y = 2 x là
1
A. y0 = x
.
B. y0 = 2 x . ln x.
2 . ln x
!4x
!2−x
2
3
Câu 8. Tập các số x thỏa mãn


"3
!2
#
2
2
A. −∞; .

B. − ; +∞ .
3
3

C. y0 =

1
.
ln 2

#
2
C. −∞; .
5

D. y0 = 2 x . ln 2.

"

!
2
D.
; +∞ .
5

Câu 9. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 20.
B. 15, 36.

C. 24.
D. 3, 55.
Câu 10. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 210 triệu.
B. 216 triệu.
C. 220 triệu.
D. 212 triệu.
Câu 11. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối 20 mặt đều.
1
Câu 12. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. .
B. − .
3
3

C. Khối tứ diện đều.

D. Khối bát diện đều.

C. −3.


D. 3.
Trang 1/11 Mã đề 1


Câu 13. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1079
1637
1728
23
.
B.
.
C.
.
D.
.
A.
68
4913
4913
4913
Câu 14. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 2).
B. Hàm số đồng biến trên khoảng (0; 2).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).
Câu 15. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?


A. y = log π4 x.
B. y = loga x trong đó a = 3 − 2.
D. y = log √2 x.
C. y = log 14 x.
2

2

sin x
Câu 16.
+ 2cos x lần
√ =2
√ lượt là
√ [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x)
B. 2 và 3.
C. 2 và 2 2.
D. 2 2 và 3.
A. 2 và 3.

Câu 17. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 2 nghiệm.
B. 3 nghiệm.
C. 1 nghiệm.

Câu 18. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. .
B. −3.
C. − .

3
3
Câu 19. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?

D. Vơ nghiệm.

D. 3.

(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 2.

B. 1.

C. 0.

D. 3.

Câu 20. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e2 .
B. 2e4 .
C. −2e2 .
D. −e2 .
Câu 21. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là

. Khi đó thể tích khối lăng trụ là
4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
36
6
12
24

Câu 22. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. Vơ nghiệm.
B. 3 nghiệm.
C. 2 nghiệm.
D. 1 nghiệm.
Câu 23. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là


10a3 3
3
3
3
A. 20a .
B. 40a .
C. 10a .
D.
.
3
Câu 24. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 1.
B. m > −1.
C. m > 0.
D. m ≥ 0.
Câu 25. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n3 lần.
C. n3 lần.
D. 2n2 lần.
Câu 26. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
Trang 2/11 Mã đề 1


(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].

A. 4.

B. 3.

C. 2.

D. 1.

Câu 27. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu của A lên BC là
!
!
8
5
7
; 0; 0 .
B.
; 0; 0 .
C. (2; 0; 0).
D.
; 0; 0 .
A.
3
3
3
Câu 28. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?

Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ.
(1, 01)3
100.1, 03
triệu.
B. m =
A. m =
triệu.
3
(1, 01)3 − 1
100.(1, 01)3
120.(1, 12)3
triệu.
D.
m
=
triệu.
C. m =
(1, 12)3 − 1
3
Câu 29. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 7 mặt.
B. 9 mặt.
C. 6 mặt.

D. 8 mặt.

Câu 30. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 2e + 1.
B. 2e.

C. .
D. 3.
e
2
Câu 31. Tính mơ đun của số phức z biết
√ (1 + 2i)z = 3 + 4i. √4

A. |z| = 5.
B. |z| = 2 5.
C. |z| = 5.
D. |z| = 5.
a
1
Câu 32. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 1.
B. 4.
C. 2.
D. 7.
!
1
1
1
Câu 33. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5

C. +∞.
D. .
A. 2.
B. .
2
2
log(mx)
Câu 34. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m = 4.
B. m ≤ 0.
C. m < 0 ∨ m > 4.
D. m < 0.
Câu 35. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 6).
B. (1; 3; 2).
C. (2; 4; 4).
D. (2; 4; 3).
Câu 36. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 22016 .
B. 1.
C. 0.
D. e2016 .
Câu 37. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −5.
B. Không tồn tại.
C. −3.


D. −7.

Câu 38. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 4}.
B. {5; 3}.
C. {4; 3}.

D. {3; 5}.
Trang 3/11 Mã đề 1


Câu 39. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai mặt.
B. Ba mặt.
C. Năm mặt.
D. Bốn mặt.
log 2x

Câu 40. [3-1229d] Đạo hàm của hàm số y =
x2
1 − 2 ln 2x
1
1 − 2 log 2x
1 − 4 ln 2x
A. y0 = 3
.
B. y0 = 3
.
C. y0 =

.
D. y0 =
.
3
x ln 10
2x ln 10
x
2x3 ln 10
Câu 41. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số đồng biến trên khoảng (1; 2).
C. Hàm số nghịch biến trên khoảng (−∞; 0).
D. Hàm số nghịch biến trên khoảng (1; +∞).
Câu 42. [1] !Tập xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
A. −∞; .
B.
; +∞ .
C. − ; +∞ .
2
2
2

!
1
D. −∞; − .
2


Câu 43. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 10 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 44. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 160 cm2 .
C. 1200 cm2 .
D. 120 cm2 .
Câu 45. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD

√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng


a 2
a 2
.
B. a 2.
.
C. 2a 2.
D.
A.
2
4
Câu 46.

!
Z
Z Các khẳng định nào sau
Z đây là sai?
0

f (x)dx = f (x).
Z
Z
Z
Z
C.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C. D.
k f (x)dx = k
f (x)dx, k là hằng số.
A.

f (x)dx = F(x) +C ⇒

f (u)dx = F(u) +C. B.

[ = 60◦ , S O
Câu 47. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.√Khoảng cách từ A đến (S
√ BC) bằng


2a 57
a 57

a 57
A. a 57.
B.
.
C.
.
D.
.
19
19
17
Câu 48. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

A. aαβ = (aα )β .
B. aα+β = aα .aβ .
C. aα bα = (ab)α .
D. β = a β .
a
!
1
1
1
Câu 49. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 1.

B. 2.
C. .
D. 0.
2
3a
Câu 50. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a
a 2
a
2a
A. .
B.
.
C. .
D.
.
3
3
4
3
x+2
Câu 51. Tính lim
bằng?
x→2
x

A. 1.
B. 3.
C. 0.
D. 2.
Trang 4/11 Mã đề 1


Câu 52. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√ của hàm số. Khi đó tổng
√M + m

A. 8 2.
B. 8 3.
C. 16.
D. 7 3.
x
x−3 x−2 x−1
+
+
+
và y = |x + 2| − x − m (m là tham
Câu 53. [4-1213d] Cho hai hàm số y =
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (2; +∞).
B. (−∞; 2).

C. [2; +∞).
D. (−∞; 2].
[ = 60◦ , S O
Câu 54. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S
√ BC) bằng


a 57
a 57
2a 57
B.
.
C.
.
D.
.
A. a 57.
19
17
19
Câu 55. Khối đa diện đều loại {3; 4} có số cạnh
A. 10.
B. 12.
C. 6.
D. 8.
Câu 56. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.

B. m < 3.
C. m ≤ 3.
D. m > 3.
2
1−n
bằng?
Câu 57. [1] Tính lim 2
2n + 1
1
1
1
B. − .
C. 0.
D. .
A. .
2
2
3
3
2
Câu 58. Hàm số y = −x + 3x − 1 đồng biến trên khoảng nào dưới đây?
A. R.
B. (−∞; 1).
C. (0; 2).
D. (2; +∞).
Câu 59. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 18 tháng.

B. 16 tháng.
C. 17 tháng.
D. 15 tháng.
Câu 60. [1] Đạo hàm của làm số y = log x là
ln 10
1
B. y0 =
.
A. y0 = .
x
x

1
.
x ln 10
√3
4
Câu 61. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
7
5
A. a 3 .
B. a 3 .
C. a 8 .
C. y0 =

D.

1
.

10 ln x
2

D. a 3 .

Câu 62. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 25 m.
B. 387 m.
C. 27 m.
D. 1587 m.
Câu 63. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối 12 mặt đều.

C. Khối bát diện đều.

D. Khối tứ diện đều.

Câu 64. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.




5 13
A. 26.

B. 2.
C. 2 13.
D.
.
13
0 0 0 0
0
Câu 65.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 3
a 6
A.
.
B.
.
C.
.
D.
.
7
2
2
3
Trang 5/11 Mã đề 1


Câu 66. Khẳng định nào sau đây đúng?

A. Hình lăng trụ tứ giác đều là hình lập phương.
B. Hình lăng trụ đứng là hình lăng trụ đều.
C. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
Câu 67. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = −21.
C. P = −10.
D. P = 21.
5
Câu 68. Tính lim
n+3
A. 0.
B. 3.
C. 1.
D. 2.
Câu 69. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
B. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 70. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 5.
B. V = 4.
C. V = 3.
D. V = 6.
Câu 71. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. Vô nghiệm.

C. 3.




D. 1.

Câu 72. [12215d] Tìm m để phương trình 4 x+
− 4.2 x+
− 3m + 4 = 0 có nghiệm
3
9
3
B. m ≥ 0.
C. 0 ≤ m ≤ .
D. 0 ≤ m ≤ .
A. 0 < m ≤ .
4
4
4
2
2
2
1 + 2 + ··· + n
Câu 73. [3-1133d] Tính lim
n3
1
2
B. .
C. +∞.

D. 0.
A. .
3
3
Câu 74. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
B. Z
F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
u0 (x)
dx = log |u(x)| + C.
C.
u(x)
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
Câu 75. Khối đa diện đều loại {5; 3} có số mặt
A. 12.
B. 8.

1−x2

C. 30.

1−x2

D. 20.

Câu 76. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một hoặc hai.
B. Có một.

C. Khơng có.
D. Có hai.
!
!
!
1
2
2016
4x
Câu 77. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T =
.
B. T = 2017.
C. T = 2016.
D. T = 1008.
2017
Câu 78. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
A. 3.
B. 1.

C. .
D. .
2
2
Trang 6/11 Mã đề 1


Câu 79.
đề nào sai? Z
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh Z
A.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
B.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
Z
Z
Z
Z
C.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
D.
f (x)g(x)dx =
f (x)dx g(x)dx.
Câu 80. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 1.
B. 2.

C. −1.

D. 6.

Câu 81. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
z
x+1 y−5
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
d:
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 1; 6).
B. ~u = (2; 2; −1).
C. ~u = (3; 4; −4).
D. ~u = (1; 0; 2).
Câu 82. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (II).

B. Cả ba mệnh đề.

C. (II) và (III).


D. (I) và (III).

Câu 83. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 70, 128 triệu đồng. B. 20, 128 triệu đồng. C. 50, 7 triệu đồng.
D. 3, 5 triệu đồng.

Câu 84. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 62.
C. 64.
D. Vô số.
Câu 85. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 4.
B. ln 12.
C. ln 14.
D. ln 10.
3
x −1
Câu 86. Tính lim
x→1 x − 1
A. 0.
B. 3.
C. +∞.
D. −∞.
Câu 87. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n

n2 + n + 1
1 − 2n
n2 − 2
.
B.
u
=
.
C.
u
=
.
D.
u
=
.
A. un =
n
n
n
n2
(n + 1)2
5n + n2
5n − 3n2
!
5 − 12x
Câu 88. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. Vô nghiệm.

B. 1.
C. 3.
D. 2.
Câu 89. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + sin x cos x.
B. 1 + 2 sin 2x.
C. 1 − sin 2x.

D. −1 + 2 sin 2x.
! x3 −3mx2 +m
1
nghịch biến trên
Câu 90. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
π
khoảng (−∞; +∞)
A. m ∈ R.
B. m , 0.
C. m = 0.
D. m ∈ (0; +∞).
Trang 7/11 Mã đề 1


Câu 91. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (1; +∞).
C. (−∞; −1).

D. (−1; 1).

Câu 92. Khối đa diện đều loại {3; 5} có số đỉnh

A. 8.
B. 30.
C. 12.
D. 20.
Z 3
a
a
x
Câu 93. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 28.
B. P = 4.
C. P = 16.
D. P = −2.
Câu 94. Dãy số nào có giới hạn bằng 0?!
n
−2
.
A. un = n2 − 4n.
B. un =
3

!n
6
C. un =

.
5

D. un =

n3 − 3n
.
n+1

Câu 95. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3


2 3
A. 2.
B. 1.
C. 3.
D.
.
3
d = 300 .
Câu 96. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V của khối lăng trụ đã cho. √



3a3 3
a3 3
3
3
A. V = 6a .
B. V = 3a 3.
C. V =
.
D. V =
.
2
2
π
Câu 97. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu thức T = a + b 3.


A. T = 4.
B. T = 2.
C. T = 2 3.
D. T = 3 3 + 1.
4x + 1
Câu 98. [1] Tính lim
bằng?
x→−∞ x + 1
A. 2.

B. −4.
C. −1.
D. 4.
Câu 99. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 72cm3 .
B. 27cm3 .
C. 64cm3 .
D. 46cm3 .
Câu 100. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của
P = xy + x + 2y + 17
A. −15.
B. −5.
C. −9.
D. −12.

Câu 101. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 62.
C. 63.
D. Vô số.
log2 240 log2 15
Câu 102. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. 3.
B. −8.
C. 1.

D. 4.
2
2n − 1
Câu 103. Tính lim 6
3n + n4
2
A. 0.
B. 1.
C. .
D. 2.
3
!2x−1
!2−x
3
3
Câu 104. Tập các số x thỏa mãn


5
5
A. (−∞; 1].
B. [3; +∞).
C. [1; +∞).
D. (+∞; −∞).
Trang 8/11 Mã đề 1


Câu 105. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac

3b + 2ac
3b + 3ac
.
B.
.
C.
.
D.
.
A.
c+2
c+2
c+1
c+3
Câu 106. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


3
3
3
a
a
a
3
3
A. a3 .
B.
.
C.

.
D.
.
6
3
2
Câu 107. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp 6 lần.
C. Tăng gấp 4 lần.
D. Tăng gấp đôi.
Câu 108. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi
M, N và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng




20 3
14 3
A. 6 3.
.
C. 8 3.
.
B.
D.
3
3
Câu 109. Dãy số nào sau đây có giới hạn khác 0?

1
n+1
sin n
1
A. .
B. √ .
.
D.
.
C.
n
n
n
n
Câu 110. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 6.
B. y(−2) = −18.
C. y(−2) = 2.
D. y(−2) = 22.
Câu 111. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = (−2; 1).
B. D = [2; 1].
C. D = R \ {1; 2}.
2

D. D = R.

x2 − 12x + 35
Câu 112. Tính lim

x→5
25 − 5x
2
2
B. −∞.
C. +∞.
D. .
A. − .
5
5
Câu 113. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của√|z + 2 + i|



12 17
A.
.
B. 34.
C. 68.
D. 5.
17
Câu 114. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −2 ≤ m ≤ 2.
B. m ≥ 3.
C. −3 ≤ m ≤ 3.
D. m ≤ 3.
3

Câu 115. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là

A. e2 .
B. e5 .
C. e.
D. e3 .
Câu 116. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất khơng thay đổi?
A. 102.424.000.
B. 102.423.000.
C. 102.016.000.
D. 102.016.000.
Câu 117. Khối đa diện đều loại {5; 3} có số cạnh
A. 20.
B. 8.
2n − 3
bằng
Câu 118. Tính lim 2
2n + 3n + 1
A. 0.
B. 1.

C. 12.

D. 30.

C. −∞.

D. +∞.


1
5

Câu 119. [2] Tập xác định của hàm số y = (x − 1) là
A. D = R.
B. D = (−∞; 1).
C. D = (1; +∞).

D. D = R \ {1}.
Trang 9/11 Mã đề 1


Câu 120. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 1.
B. +∞.

C. 2.

D. 0.

Câu 121. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].

67
.
27
Câu 122. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 3).
B. A0 (−3; −3; 3).

C. A0 (−3; −3; −3).
D. A0 (−3; 3; 1).
A. −7.

B. −2.

C. −4.

D.

Câu 123. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −3.
C. m = −2.

D. m = −1.

Câu 124. Khối lập phương thuộc loại
A. {3; 4}.
B. {3; 3}.

C. {5; 3}.

D. {4; 3}.

C. x = 2.

D. x = 3.

Câu 125. Hàm số y =

A. x = 0.

x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 1.

Câu 126. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
B.
.
C.
.
D. a3 .
A.
24
12
6
2

Câu 127. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
2
1
1
A. 3 .

B.
.
C.
.
e
2e3
e2

D.

1
√ .
2 e

Câu 128. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc
60◦ . Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n.
Thể tích khối


√ chóp S .ABMN là 3 √
3
5a 3
4a3 3
a3 3
2a 3
.
B.
.
C.
.

D.
.
A.
3
3
3
2
Câu 129. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; −8)(.
B. A(4; 8).
C. A(4; −8).
D. A(−4; 8).
Câu 130. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
9
1
2
1
A.
.
B. .
C. .
D.
.
10
5
5
10
- - - - - - - - - - HẾT- - - - - - - - - -


Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2. A

3. A

4. A

5. A

6. A

7.
9.

D

8.
10.

B

11. A
C


13.
15.

D

12.

B

14.

B

16.

D

17. A

18. A

19. A

20.

21.

B


C

D
D

22.

C

23. A

24.

B

25. A

26.

B
B

27.

B

28.

29.


B

30.

D

32.

D

31.

C

33. A

34. A

35. A

36.

37.

B

38.

39.


B

40. A

41. A

D

42.

43.

D

C

44. A

45. A
47.

C

46. A
B

49. A
51.

D


53.

48.

D

50.

D

52.

C

54.

C
B

55.

B

56. A

57.

B


58.

C

59.

B

60.

C

62.

C

D

61.
63. A
65.
67.

D
B

64.

D


66.

D

68. A
1


69. A

70.
D

71.
73.

B

75. A

72.

C

74.

C

76. A


77.

D

78.

79.

D

80.

81.

D

82. A

83.

B

B

C
D

84.

B


85.

C

86.

B

87.

C

88.

B

89.

D

90.

C

91.

D

92.


C

93.

B

94.

B

95. A

96.

97. A

98.

D
D

99.

B

100.

101.


B

102.

103. A

104.

105. A

106.

107. A

108. A

109.

D

110.

111.

D

112.

113. A
115.


D

D
B
D

120.

D

122. A

B

124.

C

126.

B

127.

C

118. A

C


123.

129.

C

116. A

B

119.

125.

B

114.

117.
121.

C

128.

C
B

130. A


2

D
B
D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×