Tải bản đầy đủ (.pdf) (13 trang)

Đề ôn tập toán thptqg 5 (140)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.61 KB, 13 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

9x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
Câu 1. [2-c] Cho hàm số f (x) = x
9 +3
1
A. −1.
B. 2.
C. .
D. 1.
2
Câu 2. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
B.
.
C.
.
D. a3 .


A.
24
6
12
Câu 3. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 + ln x.
B. y0 = 1 − ln x.

C. y0 = x + ln x.

D. y0 = ln x − 1.

Câu 4. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 24.
B. 3, 55.
C. 15, 36.
D. 20.
Câu 5. Cho z là √
nghiệm của phương trình x2 + x + 1 = 0. Tính P = z4 + 2z3 − z

−1 − i 3
−1 + i 3
A. P =
.
B. P = 2i.
C. P = 2.
D. P =
.

2
2
Câu 6. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng
hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD

√ là

3
3
3
3
a 3
8a 3
8a 3
4a 3
.
B.
.
C.
.
D.
.
A.
9
9
9
3
Câu 7. Dãy số nào sau đây có giới hạn khác 0?

n+1
sin n
A.
.
B.
.
n
n

1
C. √ .
n

D.

1
.
n

d = 120◦ .
Câu 8. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 2a.
B.
.
C. 4a.
D. 3a.
2
Câu 9. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là

1
1
1
A. − 2 .
B. − .
C. − .
e
e
2e

D. −e.

Câu 10. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC) một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √

a3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
4
12
4

8
Câu 11. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −9.
B. −5.
C. −15.
D. −12.
Câu 12.
√ của |z|
√ [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất
A. 3.
B. 1.
C. 2.
D. 5.
Trang 1/10 Mã đề 1


Câu 13. Cho I =

Z

3

x


dx =

0 4+2 x+1
trị P = a + b + c + d bằng?

A. P = 16.
B. P = 28.

a
a
+ b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
d
d
C. P = 4.

D. P = −2.

Câu 14. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 4).
B. (2; 4; 6).
C. (1; 3; 2).
D. (2; 4; 3).
Câu 15. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 4}.
B. {5; 3}.
C. {4; 3}.

D. {3; 3}.

Câu 16. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 8 m.
B. 16 m.
C. 24 m.

D. 12 m.
Câu 17. Trong các mệnh đề dưới đây, mệnh đề nào
! sai?
un
A. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn !
un
B. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
C. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
D. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
2n + 1
Câu 18. Tìm giới hạn lim
n+1
A. 2.
B. 0.

C. 3.

D. 1.

Câu 19. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vuông cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD



3
3
a 3
a 3
a3
A. a3 .
B.
.
C.
.
D.
.
3
9
3
Câu 20. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 3.

B. 4.

C. 2.

D. 1.


1
Câu 21. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 < m < −1.
B. −2 ≤ m ≤ −1.
C. (−∞; −2) ∪ (−1; +∞). D. (−∞; −2] ∪ [−1; +∞).
Câu 22. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (−∞; 2).
C. Hàm số nghịch biến trên khoảng (0; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).
Câu 23. [1] !Tập xác định của hàm số y != log3 (2x + 1) là
!
1
1
1
; +∞ .
B. − ; +∞ .
C. −∞; .
A.
2
2
2

!
1
D. −∞; − .
2
Trang 2/10 Mã đề 1



Câu 24. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. Vô số.
B. 3.
C. 2.
D. 1.
Câu 25. Khối đa diện đều loại {3; 3} có số đỉnh
A. 4.
B. 2.

C. 3.

D. 5.

Câu 26. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
B. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
C. Cả ba đáp án trên.

D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
log 2x

Câu 27. [3-1229d] Đạo hàm của hàm số y =
x2
1
1 − 4 ln 2x
1 − 2 ln 2x
A. y0 = 3

.
B. y0 =
.
C. y0 = 3
.
3
2x ln 10
2x ln 10
x ln 10
Câu 28. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 2.

B. 3.

C. 4.

D. y0 =
1
3|x−1|

1 − 2 log 2x
.
x3

= 3m − 2 có nghiệm duy

D. 1.

Câu 29. Cho khối chóp S .ABC

√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
Thể tích khối chóp S .ABC √là
vng góc
√ với đáy và S C = a 3.3 √

a3 6
a 3
2a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
12
2
9
4
Câu 30. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m > .
C. m ≤ .
D. m < .

4
4
4
4
log2 240 log2 15
Câu 31. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. 1.
B. −8.
C. 3.
D. 4.
Câu 32. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng số cạnh của khối chóp.
B. Số mặt của khối chóp bằng 2n+1.
C. Số cạnh của khối chóp bằng 2n.
D. Số đỉnh của khối chóp bằng 2n + 1.
Câu 33. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng


a 2
a 2
A.
.
B.
.

C. 2a 2.
D. a 2.
4
2
Câu 34. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e2 − 2; m = e−2 + 2.
B. M = e−2 + 2; m = 1.
C. M = e−2 + 1; m = 1.
D. M = e−2 − 2; m = 1.

Câu 35. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) √
bằng


a 38
3a 38
3a 58
3a
A.
.
B.
.
C.
.
D.
.
29
29

29
29
Trang 3/10 Mã đề 1


Câu 36. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng



c a2 + b2
a b2 + c2
abc b2 + c2
b a2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
1
Câu 37. Hàm số y = x + có giá trị cực đại là

x
A. −1.
B. 2.
C. −2.
D. 1.
p
ln x
1
Câu 38. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
1
8
8
A. .
B. .
C. .
D. .
3
9
3
9
x−3 x−2 x−1
x
Câu 39. [4-1213d] Cho hai hàm số y =
+
+
+

và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (2; +∞).
B. (−∞; 2].
C. (−∞; 2).
D. [2; +∞).
Câu 40. [1-c] Giá trị của biểu thức
A. 4.

log7 16
log7 15 − log7

B. −2.

15
30

bằng
C. 2.

D. −4.

Câu 41. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m ≥ 3.

C. m ≤ 3.
D. m > 3.
Câu 42. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
A. .
B. 1.
C. 2.
2
2−n
Câu 43. Giá trị của giới hạn lim
bằng
n+1
A. 0.
B. 1.
C. 2.

D.

ln 2
.
2

D. −1.

Câu 44. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 3.
B. V = 6.
C. V = 4.
D. V = 5.

Câu 45. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối bát diện đều.

C. Khối 12 mặt đều.

D. Khối tứ diện đều.

Câu 46. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích khối
√ chóp S .ABCD là 3 √
3
3

a 3
2a 3
a 3
A.
.
B.
.
C.
.
D. a3 3.
6
3
3
Câu 47. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng

5
7
A. .
B. 6.
C. 9.
D. .
2
2
Câu 48. Khối đa diện đều loại {5; 3} có số mặt
A. 12.
B. 30.
C. 8.
D. 20.
Câu 49. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 1200 cm2 .
B. 160 cm2 .
C. 120 cm2 .
D. 160 cm2 .
Trang 4/10 Mã đề 1


Câu 50. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e2 .
B. −e2 .
C. −2e2 .
D. 2e4 .
Câu 51. Bát diện đều thuộc loại
A. {5; 3}.
B. {3; 4}.


C. {3; 3}.

Câu 52. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (2; +∞).
B. (−∞; 1).
C. (0; 2).

D. {4; 3}.
D. R.

Câu 53. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
5
13
23
9
A. − .
B.
.
C. −
.
D.
.
16
100
100
25
Câu 54.
Z Các khẳng định

Z nào sau đây là sai?

Z

k f (x)dx = k
f (x)dx, k là hằng số.
!0
Z
C.
f (x)dx = f (x).
A.

B.
Z
D.

Câu 55. [1] Đạo hàm của làm số y = log x là
ln 10
1
.
B. y0 =
.
A.
10 ln x
x

f (x)dx = F(x) +C ⇒

Z


f (u)dx = F(u) +C.

f (x)dx = F(x) + C ⇒

Z

f (t)dt = F(t) + C.

C. y0 =

1
.
x ln 10

1
D. y0 = .
x

2

Câu 56. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
1
A. √ .
B. 2 .
C. 3 .
e
2e
2 e


D.

2
.
e3

[ = 60◦ , S O
Câu 57. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc

√ với mặt đáy và S O = a.√Khoảng cách từ O đến (S BC) bằng

2a 57
a 57
a 57
.
B.
.
C. a 57.
D.
.
A.
19
19
17
Câu 58. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ Thể tích khối chóp S 3.ABC
√ là



a3 2
a 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
12
4
6
Câu 59.
các khẳng định sau, khẳng định nào sai?
Z Trong
u0 (x)
A.
dx = log |u(x)| + C.
u(x)
B. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
C. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
D. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
Câu 60. Khối lập phương thuộc loại

A. {5; 3}.
B. {3; 4}.

C. {3; 3}.

D. {4; 3}.

Câu 61.
Z Trong các khẳng định sau, khẳng định nào sai? Z
1
A.
dx = ln |x| + C, C là hằng số.
B.
0dx = C, C là hằng số.
Z x
Z
xα+1
C.
dx = x + C, C là hằng số.
D.
xα dx =
+ C, C là hằng số.
α+1
Câu 62. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −4.
B. 2.
C. 4.

D. −2.
Trang 5/10 Mã đề 1



Câu 63. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 64. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 3
a3 5
a3 5
a3 5
A.
.
B.
.
C.
.
D.
.
12
12
6
4
Z 2
ln(x + 1)
Câu 65. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b

x2
1
A. 1.
B. 0.
C. −3.
D. 3.
Câu 66. Khối đa diện đều loại {3; 3} có số cạnh
A. 4.
B. 6.

C. 8.

D. 5.

Câu 67. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD
√ là
3
10a 3
A. 40a3 .
B. 20a3 .
C.
.
D. 10a3 .
3
Câu 68. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) trên khoảng (a; b).
B. Cả ba câu trên đều sai.
C. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.

D. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
Câu 69. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m ≥ 0.
B. m > 1.
C. m > −1.

D. m > 0.

Câu 70. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình chóp.
B. Hình lập phương.
C. Hình lăng trụ.

D. Hình tam giác.

Câu 71. Cho hai hàm y = f (x), y = g(x)
Z có đạo hàm
Z trên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f 0 (x)dx =
g0 (x)dx.
Z
Z
0
B. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu

f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.

Câu 72. [1] Tính lim
x→3

A. −∞.

x−3
bằng?
x+3
B. +∞.

C. 1.

D. 0.

Câu 73. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a =
.
B. log2 a = − loga 2.
C. log2 a = loga 2.
D. log2 a =

.
log2 a
loga 2
Câu 74. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 2.
C. 1.


4n2 + 1 − n + 2
Câu 75. Tính lim
bằng
2n − 3
A. +∞.
B. 1.
C. 2.

D. 3.

D.

3
.
2
Trang 6/10 Mã đề 1


Câu 76. Giá trị của lim (3x2 − 2x + 1)
x→1


A. 1.

B. 3.

D. +∞.

C. 2.

Câu 77. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.
B. lim f (x) = f (a).
x→a

x→a

x→a

C. f (x) có giới hạn hữu hạn khi x → a.

D. lim+ f (x) = lim− f (x) = a.
x→a

x→a

a
1
+
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
C. 7.

D. 4.

Câu 78. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) =
A. 2.

B. 1.

d = 60◦ . Đường chéo
Câu 79. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
0
0 0
0 0

BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0





2a3 6
a3 6
4a3 6
A.
.
B.
.
C.
.
D. a3 6.
3

3
3
Câu 80. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 20, 128 triệu đồng. B. 50, 7 triệu đồng.
C. 70, 128 triệu đồng. D. 3, 5 triệu đồng.
Câu 81. Tính lim
A. −∞.

2n − 3
bằng
+ 3n + 1
B. +∞.

2n2

C. 0.

D. 1.

Câu 82. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. Vơ số.
C. 63.
D. 62.
Câu 83. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 13.

C. 9.

D. 0.

x
x+1
x−2 x−1
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [−3; +∞).
B. (−∞; −3).
C. (−∞; −3].
D. (−3; +∞).
Câu 84. [4-1212d] Cho hai hàm số y =

Câu 85.√Thể tích của tứ diện đều √
cạnh bằng a
3
3
a 2
a 2
A.
.

B.
.
6
12


a3 2
C.
.
4


a3 2
D.
.
2

Câu 86. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng số mặt của khối chóp.
B. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
C. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D. Số đỉnh của khối chóp bằng số mặt của khối chóp.
π
Câu 87. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu thức T = a + b 3.


A. T = 4.

B. T = 3 3 + 1.
C. T = 2 3.
D. T = 2.
Câu 88. Tính lim
A. +∞.

x→3

x2 − 9
x−3

B. 3.

C. 6.

D. −3.
Trang 7/10 Mã đề 1


Câu 89. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục thực.
B. Hai đường phân giác y = x và y = −x của các góc tọa độ.
C. Trục ảo.
D. Đường phân giác góc phần tư thứ nhất.
Câu 90. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m , 0.
B. m < 0.
C. m > 0.

D. m = 0.


Câu 91. Cho z1 , z2 là hai nghiệm của phương trình z + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 21.
B. P = 10.
C. P = −10.
D. P = −21.
2

Câu 92. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
100.1, 03
120.(1, 12)3
triệu.
B. m =
triệu.
A. m =
3
(1, 12) − 1
3
(1, 01)3
100.(1, 01)3
triệu.
D. m =
triệu.
C. m =
3
(1, 01)3 − 1

Câu 93. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 94. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim− f (x) = f (b).
B. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim− f (x) = f (a) và lim− f (x) = f (b).
D. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→a
x→b
x→b

Câu 95. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là


πa3 3
πa3 3
πa3 3
πa3 6

A. V =
.
B. V =
.
C. V =
.
D. V =
.
2
3
6
6
Câu 96. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
A.
.
B. 7.
C. 5.
D. .
2
2


d = 90 , ABC
d = 30 ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 97. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là



3

2
a3 3
a3 3
a
A.
.
B.
.
C. 2a2 2.
D.
.
24
12
24
Câu 98. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
a
2a
5a
8a
A. .
B.
.
C.
.
D.
.

9
9
9
9
x2 − 3x + 3
Câu 99. Hàm số y =
đạt cực đại tại
x−2
A. x = 0.
B. x = 2.
C. x = 3.
D. x = 1.
1 − 2n
Câu 100. [1] Tính lim
bằng?
3n + 1
2
2
1
A. 1.
B. .
C. − .
D. .
3
3
3
Trang 8/10 Mã đề 1


Câu 101. Cho hình

√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là


a3 5
a3 15
a3 6
3
A.
.
B.
.
C. a 6.
D.
.
3
3
3
Câu 102. Khối đa diện đều loại {3; 5} có số mặt
A. 30.
B. 20.

C. 12.

D. 8.

1 3
x − 2x2 + 3x − 1.
3

C. (−∞; 1) và (3; +∞). D. (−∞; 3).

Câu 103. Tìm tất cả các khoảng đồng biến của hàm số y =
A. (1; +∞).

B. (1; 3).

Câu 104. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [1; +∞).
B. [−3; 1].
C. (−∞; −3].
D. [−1; 3].
Câu 105. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc
60◦ . Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n.
Thể tích khối
√ chóp S .ABMN là 3 √


3
2a 3
5a 3
4a3 3
a3 3
A.
.
B.
.
C.
.

D.
.
3
3
3
2
Câu 106. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 13.
B. log2 2020.
C. 2020.
D. 13.
Câu 107. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 3
a 6
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.

24
8
24
48
Câu 108. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞

x→+∞

A. lim [ f (x) − g(x)] = a − b.
x→+∞

C. lim [ f (x)g(x)] = ab.
x→+∞

f (x) a
= .
x→+∞ g(x)
b
D. lim [ f (x) + g(x)] = a + b.

B. lim

x→+∞

Câu 109. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9
tháng thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không
thay đổi trong thời gian gửi.
A. 0, 8%.
B. 0, 7%.

C. 0, 5%.
D. 0, 6%.
Câu 110. Khối đa diện đều loại {3; 4} có số cạnh
A. 6.
B. 10.

C. 12.

D. 8.

Câu 111. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
B. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
!
1
1
1
+ ··· +
Câu 112. [3-1131d] Tính lim +
1 1+2
1 + 2 + ··· + n
3
5
A. 2.
B. .
C. .
D. +∞.
2

2
Câu 113. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối bát diện đều.

C. Khối tứ diện đều.

D. Khối 12 mặt đều.
Trang 9/10 Mã đề 1


Câu 114. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Khơng có.
B. Có hai.
C. Có một.
D. Có vơ số.
Câu 115. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 0.

B. 2.

C. 1.

Câu 117. Tính lim
A. +∞.


x→1

x3 − 1
x−1

1

B. 0 ≤ m ≤ 1.

= m − 2 có nghiệm
3|x−2|
C. 2 < m ≤ 3.
D. 2 ≤ m ≤ 3.

B. −∞.

C. 0.

Câu 116. [12214d] Với giá trị nào của m thì phương trình
A. 0 < m ≤ 1.

D. 3.

D. 3.

Câu 118. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
ab
ab

1
A. √
.
B. 2
.
D.
.
.
C.


a + b2
a2 + b2
2 a2 + b2
a2 + b2
un
Câu 119. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. −∞.
B. 0.
C. 1.
D. +∞.
2

2

Câu 120.
và giá trị lớn nhất của hàm số √
f (x) = 2sin x + 2cos x lần lượt là
√ [3-c] Giá trị nhỏ nhất √

A. 2 và 3.
B. 2 2 và 3.
C. 2 và 2 2.
D. 2 và 3.
Câu 121. Tính lim
x→5

2
A. − .
5

x2 − 12x + 35
25 − 5x
B. +∞.

C.

2
.
5

D. −∞.

Câu 122. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 13 năm.
B. 10 năm.
C. 12 năm.

D. 11 năm.
2n2 − 1
Câu 123. Tính lim 6
3n + n4
2
B. 1.
A. .
3

C. 0.

D. 2.

Câu 124. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là −4.
B. Phần thực là −3, phần ảo là 4.
C. Phần thực là 3, phần ảo là −4.
D. Phần thực là 3, phần ảo là 4.
Câu 125. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 9 mặt.
D. 3 mặt.
Câu 126. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; 6, 5].
B. (−∞; 6, 5).
C. [6, 5; +∞).

D. (4; +∞).
Trang 10/10 Mã đề 1



Câu 127. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 12 năm.
C. 10 năm.
D. 14 năm.
Câu 128. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 3.
B. 2.
C. 1.

D. 0.

Câu 129. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 0, 8.
B. 7, 2.
C. −7, 2.

D. 72.

Câu 130. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 12.
B. ln 4.
C. ln 14.
D. ln 10.
- - - - - - - - - - HẾT- - - - - - - - - -


Trang 11/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D

3. A
C

5.
7. A

C

4.

C

6.

C

8.
D


11.

D
C

12.

C

13.

B

10.

C

9.

15.

2.

B

17. A

14.

B


16.

B

18. A

19.

D

20. A

21.

B

22. A

23.

B

24.

25. A
27.

C


29. A

C

26.

D

28.

D

30.

C
C

31.

B

32.

33.

B

34.

D


35.

C

36.

37.

C

38.

D

40.

D

39.
41.

D
B

B

42.

C


43.

D

44.

C

45.

D

46.

C

47.

D

48. A

49.

D

50.

51.


B

52.

B

C

53.

C

54.

B

55.

C

56.

B

57. A

58.

B


59. A

60.

D

62.

D

61.

D

63. A
65.
67.

C
B

64.

B

66.

B


68.
1

C


C

69.

70.

D
D

71.

D

72.

73.

D

74.

C

75.


B

76.

C

77.

B

78.

C

D

79.

D

83.

84.

C
D

86.


B

87. A
89.

D

82.

C

81.
85.

80. A

88.

C

90. A

B

91.

92.

D


D

93.

B

94. A

95.

B

96.

D
D

97.

D

98.

99.

D

100.

101.


D

102.

B

104.

B

103.

C

105.

D

107.
109.

106. A

C

108.

D


114.

B

B
C

116.

117.

D

118.

B

120.

121.

C

122.

123.

C

124.


125.

D

D
B
C
B

126. A
128.

127. A
129.

C

112. A

113.

119.

B

110.

B


111. A
115.

C

130.

C

2

D
C



×