Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn tập toán thptqg 8 (359)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (150.44 KB, 12 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. √
Biểu thức nào sau đây khơng
có nghĩa

−3
0
B.
−1.
A. (− 2) .

C. (−1)−1 .

Câu 2. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; 6, 5].
B. (4; +∞).
C. [6, 5; +∞).

D. 0−1 .
D. (−∞; 6, 5).

3
2


x
Câu 3. [2] Tìm
√ m để giá trị lớn nhất của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng 8 √
A. m = ± 3.
B. m = ±1.
C. m = ±3.
D. m = ± 2.

Câu 4. Khối đa diện đều loại {3; 4} có số đỉnh
A. 4.
B. 10.

C. 6.

D. 8.

Câu 5. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
A. a 3.
B. a 6.
C.
.
D. 2a 6.
2
Câu 6. Phát biểu nào sau đây là sai?

1
A. lim √ = 0.
n
C. lim un = c (Với un = c là hằng số).

1
= 0 với k > 1.
nk
D. lim qn = 1 với |q| > 1.
B. lim

1 − 2n
bằng?
3n + 1
1
2
2
A. .
B. − .
C. .
3
3
3
log2 240 log2 15
Câu 8. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. −8.
B. 3.

C. 4.

Câu 7. [1] Tính lim

D. 1.

D. 1.

Câu 9. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng




14 3
20 3
B. 8 3.
C.
.
D.
.
A. 6 3.
3
3
x−2 x−1
x
x+1
Câu 10. [4-1212d] Cho hai hàm số y =
+

+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−3; +∞).
B. (−∞; −3).
C. [−3; +∞).
D. (−∞; −3].
Câu 11. [1] Tính lim
x→3

A. 0.

x−3
bằng?
x+3
B. 1.

C. +∞.

D. −∞.

Câu 12. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
8a

5a
2a
a
A.
.
B.
.
C.
.
D. .
9
9
9
9
Trang 1/10 Mã đề 1


tan x + m
Câu 13. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. [0; +∞).
B. (1; +∞).
C. (−∞; 0] ∪ (1; +∞). D. (−∞; −1) ∪ (1; +∞).
Câu 14.
Z Các khẳng định
Z nào sau đây là sai?

Z
C.

!0

f (x)dx = f (x).
f (x)dx, k là hằng số.
B.
Z
Z
Z
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C. D.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.

k f (x)dx = k

A.

Z

Câu 15. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. Không tồn tại.
B. −3.
C. −7.

D. −5.

Câu 16. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng

thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 5%.
B. 0, 7%.
C. 0, 6%.
D. 0, 8%.
Câu 17. Khối lập phương thuộc loại
A. {4; 3}.
B. {5; 3}.

C. {3; 3}.

D. {3; 4}.

Câu 18. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có hai.
B. Khơng có.
C. Có vơ số.
D. Có một.
Câu 19. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 6 mặt.
C. 9 mặt.

D. 7 mặt.

Câu 20. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.

B. 2n3 lần.
C. n3 lần.
D. 2n2 lần.
Câu 21. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a
A. .
B. a.
C.
.
D. .
2
2
3
Câu 22.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
[ f (x) + g(x)]dx =

A.

f (x)dx +

g(x)dx, với mọi f (x), g(x) liên tục trên R.

Z


f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
C.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
D.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
B.

Câu 23. Khối đa diện đều loại {4; 3} có số cạnh
A. 12.
B. 30.

C. 20.

D. 10.

Câu 24. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.




5 13

A. 26.
B. 2 13.
C. 2.
D.
.
13
Câu 25. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
Trang 2/10 Mã đề 1


B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
C. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
d = 30◦ , biết S BC là tam giác đều
Câu 26. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.

.
A.
13
16
9
26
Câu 27. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n2 lần.
B. n3 lần.
C. n lần.
D. 3n3 lần.
Câu 28. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng

1
.
D. f 0 (0) = 1.
ln 10
Câu 29. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Khơng có.
B. Có một.
C. Có hai.
D. Có một hoặc hai.
log7 16
Câu 30. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. 4.
B. −4.

C. −2.
D. 2.
A. f 0 (0) = 10.

B. f 0 (0) = ln 10.

C. f 0 (0) =

Câu 31. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. e.
B. 1.
C. −2 + 2 ln 2.
Câu 32. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
C. f (x) có giá trị nhỏ nhất trên K.

D. 4 − 2 ln 2.

B. f (x) xác định trên K.
D. f (x) có giá trị lớn nhất trên K.

Câu 33. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 32π.
B. 16π.
C. 8π.
D. V = 4π.
Câu 34. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
.

C. −2.
D. −4.
A. −7.
B.
27
Câu 35. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; −1).
B. (−∞; 1).
C. (−1; 1).
D. (1; +∞).
1 + 2 + ··· + n
Câu 36. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
A. lim un = 0.
B. lim un = 1.
1
C. lim un = .
D. Dãy số un khơng có giới hạn khi n → +∞.
2
Câu 37. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lăng trụ.
B. Hình chóp.
C. Hình lập phương.
D. Hình tam giác.
2
Câu 38. Tính
√4 mơ đun của số phức z√biết (1 + 2i)z
A. |z| = 5.
B. |z| = 5.

2n + 1
Câu 39. Tính giới hạn lim
3n + 2
3
2
A. .
B. .
2
3
2
2n − 1
Câu 40. Tính lim 6
3n + n4
A. 2.
B. 1.

= 3 + 4i.
C. |z| = 5.

C.

1
.
2

C. 0.


D. |z| = 2 5.


D. 0.

D.

2
.
3
Trang 3/10 Mã đề 1


Câu 41. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 27cm3 .
B. 46cm3 .
C. 64cm3 .
D. 72cm3 .
Câu 42. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −e2 .
B. 2e4 .
C. 2e2 .
D. −2e2 .
Câu 43. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 44. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
.

B. 7.
C. .
D. 5.
A.
2
2
Câu 45. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 13.
C. 9.
D. 0.
Câu 46. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = [2; 1].
B. D = R \ {1; 2}.
C. D = R.
D. D = (−2; 1).
1
Câu 47. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 1) và (3; +∞). B. (−∞; 3).
C. (1; +∞).
D. (1; 3).


4n2 + 1 − n + 2
bằng
Câu 48. Tính lim
2n − 3
3
A. 1.

B. +∞.
C. .
D. 2.
2
Câu 49.
các khẳng định sau, khẳng định nào sai?
Z Trong
u0 (x)
dx = log |u(x)| + C.
A.
u(x)
B. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
2

Câu 50. Khối đa diện đều loại {5; 3} có số mặt
A. 12.
B. 20.
2−n
Câu 51. Giá trị của giới hạn lim
bằng
n+1
A. 0.
B. −1.

C. 30.

D. 8.


C. 1.

D. 2.

Câu 52. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √

a3 3
a3 3
a3 3
a3
A.
.
B.
.
C.
.
D.
.
4
8
12
4
Câu 53. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp
√ là 1728. Khi đó, các kích thước của hình hộp là
√ đã cho
A. 2 3, 4 3, 38.

B. 2, 4, 8.
C. 6, 12, 24.
D. 8, 16, 32.
2

Câu 54. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
2
A. 2 .
B.
.
C.
.
e
2e3
e3

D.

1
√ .
2 e

Câu 55. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lăng trụ tam giác.
B. Khối lập phương.
C. Khối tứ diện.
D. Khối bát diện đều.
Trang 4/10 Mã đề 1



Câu 56. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 + ln x.
B. y0 = ln x − 1.

C. y0 = x + ln x.

D. y0 = 1 − ln x.

Câu 57. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
A. lim
= .
B. lim [ f (x)g(x)] = ab.
x→+∞ g(x)
x→+∞
b
C. lim [ f (x) − g(x)] = a − b.
D. lim [ f (x) + g(x)] = a + b.
x→+∞

x→+∞

Câu 58. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
Thể tích khối chóp S .ABC √là

√ với đáy và S C = a 3.3 √

3
a 3
a 6
2a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
4
12
9
2
Câu 59. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 1.
B. −1.
C. 6.
D. 2.
Câu 60. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1

1
A. k = .
B. k = .
C. k = .
D. k = .
9
6
18
15

Câu 61. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là


3
3
3

a
3
a
3
a
.
C.
.
D.
.
A. a3 3.
B.

4
12
3
Câu 62. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
a 5. Thể tích khối chóp √
S .ABCD là
√ S H ⊥ (ABCD), S A =
3
3
3
4a 3
2a
2a 3
4a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
x−2
Câu 63. Tính lim

x→+∞ x + 3
2
A. 2.
B. − .
C. −3.
D. 1.
3
Câu 64. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là

3
3
a
2a 3
a3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
3
6
3
3

2
Câu 65. Giá
√ trị cực đại của hàm số y√= x − 3x − 3x + 2


A. 3 − 4 2.
B. 3 + 4 2.
C. −3 − 4 2.
D. −3 + 4 2.
1
Câu 66. Hàm số y = x + có giá trị cực đại là
x
A. 1.
B. −1.
C. −2.
D. 2.
x
x−3 x−2 x−1
Câu 67. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [2; +∞).
B. (−∞; 2].

C. (2; +∞).
D. (−∞; 2).
Câu 68. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3
Trang 5/10 Mã đề 1



2 3
A. 1.
C.
.
D. 2.
3
Câu 69. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 2020.
B. log2 13.
C. log2 2020.
D. 13.

B. 3.

Câu 70. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của


A. Khơng thay đổi.
B. Tăng lên (n − 1) lần. C. Giảm đi n lần.
D. Tăng lên n lần.
2x + 1
Câu 71. Tính giới hạn lim
x→+∞ x + 1
1
C. 1.
D. 2.
A. −1.
B. .
2
Câu 72. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = 3S h.
B. V = S h.
C. V = S h.
D. V = S h.
3
2
Câu 73. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
B.

.
C. a3 .
D.
.
A.
12
6
24
Câu 74. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 3 mặt.
C. 6 mặt.
D. 4 mặt.

Câu 75. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√ cho là



πa3 6
πa3 3
πa3 3
πa3 3
A. V =
.
B. V =
.
C. V =
.

D. V =
.
6
2
6
3
d = 300 .
Câu 76. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V của
√ khối lăng trụ đã cho.3 √
3

3a 3
a 3
B. V =
.
C. V =
.
D. V = 6a3 .
A. V = 3a3 3.
2
2
x2 − 9
Câu 77. Tính lim
x→3 x − 3
A. +∞.
B. 6.
C. 3.
D. −3.
log(mx)

Câu 78. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m > 4.
B. m < 0.
C. m ≤ 0.
D. m < 0 ∨ m = 4.
Câu 79. Mệnh đề nào sau đây sai?
A. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
B. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).
C. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
!0
Z
D.
f (x)dx = f (x).

f (x)dx = F(x) + C.

Câu 80. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp đôi.
C. Tăng gấp 4 lần.
D. Tăng gấp 6 lần.
Câu 81. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
Trang 6/10 Mã đề 1


(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).

(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Khơng có câu nào B. Câu (III) sai.
sai.

C. Câu (I) sai.

D. Câu (II) sai.

x
Câu 82. Tính diện tích hình phẳng giới hạn bởi các đường
√ y = xe , y = 0, x = 1.
3
3
1
A. .
B. 1.
C.
.
D. .
2
2
2
x
y
Câu 83. [4-c] Xét các số thực dương x, y thỏa mãn 2 + 2 = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
B. 27.

C. 18.
D. 12.
A.
2
Câu 84. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim− f (x) = f (b).
B. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a

x→b

x→a

x→b

C. lim+ f (x) = f (a) và lim+ f (x) = f (b).

x→a

x→b

x→a

x→b

D. lim+ f (x) = f (a) và lim− f (x) = f (b).

Câu 85. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 5 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 5 mặt. C. 6 đỉnh, 6 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 6 mặt.

Câu 86. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 84cm3 .
C. 48cm3 .
D. 91cm3 .
x+2
đồng biến trên khoảng
Câu 87. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x + 5m
(−∞; −10)?
A. 1.
B. 2.
C. Vơ số.
D. 3.
2n − 3
Câu 88. Tính lim 2
bằng
2n + 3n + 1
A. +∞.
B. 0.
C. −∞.
D. 1.
Câu 89. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
B. F(x) = G(x) trên khoảng (a; b).
C. Cả ba câu trên đều sai.
D. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
Câu 90. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?

A. Thập nhị diện đều. B. Bát diện đều.
C. Nhị thập diện đều.

D. Tứ diện đều.
π
Câu 91. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu thức T = a + b 3.


A. T = 2.
B. T = 3 3 + 1.
C. T = 2 3.
D. T = 4.
un
Câu 92. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 1.
B. 0.
C. +∞.
D. −∞.
Câu 93. Khối đa diện đều loại {3; 3} có số đỉnh
A. 4.
B. 2.

C. 5.

D. 3.
Trang 7/10 Mã đề 1



Câu 94. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. 2.
C. Vơ nghiệm.
D. 1.
Câu 95. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Hai mặt.
B. Bốn mặt.
C. Một mặt.

D. Ba mặt.

Câu 96. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của√|z + 2 + i|



12 17
A.
.
B. 34.
C. 68.
D. 5.
17
Câu 97. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 16 m.
B. 12 m.

C. 24 m.
D. 8 m.
Z 1
Câu 98. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

A. 1.
Câu 99. Cho I =

B. 0.
Z

3

x


C.
dx =

0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 4.
B. P = −2.

1
.
2


D.

1
.
4

a
a
+ b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
d
d
C. P = 16.

D. P = 28.

Câu 100. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
ab
1
A. 2
.
B. √
.
C. √
.
D. √
.
2

a +b
2 a2 + b2
a2 + b2
a2 + b2
Câu 101. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 24.
C. 23.
D. 21.
1
bằng
Câu 102. [1] Giá trị của biểu thức log √3
10
1
1
A. 3.
B. − .
C. −3.
D. .
3
3
Câu 103. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (1; −3).
B. (−1; −7).
C. (2; 2).

D. (0; −2).


Câu 104. Tứ diện đều thuộc loại
A. {3; 3}.
B. {4; 3}.

C. {3; 4}.

D. {5; 3}.

C. 1.

D. 3.

C. Khối 12 mặt đều.

D. Khối lập phương.

Câu 105. Tính lim
A. 0.

5
n+3

B. 2.

Câu 106. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều.

Câu 107. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp

theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 12 năm.
C. 14 năm.
D. 11 năm.
Trang 8/10 Mã đề 1


1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = e + 1.
C. xy0 = ey − 1.
D. xy0 = −ey − 1.

Câu 108. [3-12217d] Cho hàm số y = ln
A. xy0 = −ey + 1.

Câu 109. Khối đa diện đều loại {3; 5} có số cạnh
A. 30.
B. 8.
Câu 110. Phát biểu nào sau đây là sai?
1
A. lim = 0.
n
1
C. lim k = 0.

n
x2 − 12x + 35
Câu 111. Tính lim
x→5
25 − 5x
2
A. − .
B. −∞.
5
Câu 112. Khối đa diện đều loại {3; 5} có số mặt
A. 8.
B. 12.
Câu 113. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
n2 − 2
A. un =
.
B.
u
=
.
n
n2
5n − 3n2

C. 12.

D. 20.

B. lim qn = 0 (|q| > 1).

D. lim un = c (un = c là hằng số).

2
.
5

C. +∞.

D.

C. 30.

D. 20.

C. un =

n2 + n + 1
.
(n + 1)2

Câu 114. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [0; 2].
C. m ∈ [0; 4].

D. un =
log23


1 − 2n
.
5n + n2

q
x+ log23 x + 1+4m−1 =

D. m ∈ [−1; 0].

Câu 115. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đơi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 13 năm.
B. 10 năm.
C. 12 năm.
D. 11 năm.
Câu 116. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Hai đường phân giác y = x và y = −x của các góc tọa độ.
B. Trục thực.
C. Trục ảo.
D. Đường phân giác góc phần tư thứ nhất.
Câu 117. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc
60◦ . Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n.
Thể tích khối


√ chóp S .ABMN là 3 √
4a 3

5a3 3
a3 3
2a3 3
.
B.
.
C.
.
D.
.
A.
3
3
3
2
x+3
Câu 118. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. Vô số.
B. 2.
C. 1.
D. 3.
Câu 119. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là 4.
B. Phần thực là −1, phần ảo là −4.
C. Phần thực là 4, phần ảo là 1.
D. Phần thực là 4, phần ảo là −1.
2

Câu 120. Cho z là nghiệm của phương trình
= z4 + 2z3 − z
√ x + x + 1 = 0. Tính P √
−1 + i 3
−1 − i 3
A. P = 2.
B. P =
.
C. P =
.
D. P = 2i.
2
2

Trang 9/10 Mã đề 1


Câu 121. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 210 triệu.
B. 220 triệu.
C. 212 triệu.
D. 216 triệu.
Câu 122. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích khối
√ chóp S .ABCD là 3 √

3
3

2a 3
a 3
a 3
.
B.
.
C.
.
D. a3 3.
A.
3
3
6
Câu 123. Dãy!số nào có giới hạn bằng 0?
!n
n
−2
n3 − 3n
6
A. un =
.
B. un =
.
C. un =
.
D. un = n2 − 4n.
3

n+1
5
Câu 124. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {5; 3}.
B. {4; 3}.
C. {3; 3}.

D. {3; 4}.

Câu 125. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
C. T = 4 + .
D. T = e + 3.
A. T = e + 1.
B. T = e + .
e
e
Câu 126. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m < 3.
C. m ≥ 3.
D. m ≤ 3.
2
x − 5x + 6
Câu 127. Tính giới hạn lim
x→2
x−2

A. 5.
B. −1.
C. 1.
D. 0.
2
2
2
1 + 2 + ··· + n
Câu 128. [3-1133d] Tính lim
n3
1
2
A. 0.
B. +∞.
C. .
D. .
3
3
3a
, hình chiếu vng
Câu 129. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

2a
a
a
a 2
A.

.
B. .
C. .
D.
.
3
3
4
3
Câu 130. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 5 mặt.
C. 3 mặt.
D. 4 mặt.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D

2. A

3.


D

4.

5.

B

6.

7.

B

8. A

D

10.

9. A
11. A
13.

C

D

12. A
14.


B

15. A

16.

17. A

18. A

19.

C

C
B

20.

C

22.

D

23. A

24.


D

25. A

26. A

21.

27.

B

B

29.

D

31. A

28.

B

30.

B

32. A


34.

C

35.

36.

C

37.

38. A

39.

40.

D
B

41. A

C

42. A

43.

44.


C

45.

46.

C

47. A

48. A

49. A

50. A

51.

52.

C

C
D

B

53.


C

54. A

55.

C

56. A

57. A

58.

B

B

59.

C

61.

D

62.

D


63.

D

64.

D

65.

D

66.
68.

67. A
69.

C

B

70.
1

D
C


71.


D

73. A
D

75.

72.

B

74.

B

76.

B

77.

B

78.

79.

B


80. A

81. A

82.

83.

B

84.

C

85.

B

86. A

87.

B

88.

89. A

D
B


90. A
D

91.
93. A
95.

D

92.

B

94.

B

96. A

B

97. A

98.

C

99. A


100.

C

101. A

102.

103.

D

B

104. A
106.

105. A
D

107.

D
C

108.

109. A

110.


B

111.

D

112.

D

113.

D

114.

D

115.

C

116. A

117.

D

118.


119.

D

120. A

121.

122. A

C

123. A

124. A
D

125.
127.

D

B

126.

C

128.


C

130.

129. A

2

D



×