Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg (151)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.61 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
2

2

sin x
Câu 1.
+ 2cos x lần lượt là
√ [3-c] Giá trị nhỏ nhất và √giá trị lớn nhất của hàm số f (x)
√= 2
A. 2 và 3.
B. 2 2 và 3.
C. 2 và 2 2.
D. 2 và 3.

Câu 2. Thể tích của khối lập phương có cạnh bằng a 2



2a3 2
3
3
3
A. 2a 2.


B. V = 2a .
C. V = a 2.
D.
.
3
Câu 3. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m = 0.
B. m , 0.
C. m < 0.
D. m > 0.

Câu 4. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên S A
vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng (S BD)
bằng



3a
3a 58
3a 38
a 38
A.
.
B.
.
C.
.
D.
.
29

29
29
29
x2 − 9
Câu 5. Tính lim
x→3 x − 3
A. 6.
B. +∞.
C. −3.
D. 3.

Câu 6. Cho z là √
nghiệm của phương trình x2 + x + 1 = 0. Tính P = √
z4 + 2z3 − z
−1 − i 3
−1 + i 3
.
B. P = 2i.
C. P =
.
D. P = 2.
A. P =
2
2
Câu 7. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.





5 13
.
C. 2 13.
A. 2.
B.
D. 26.
13
Câu 8. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 84cm3 .
B. 91cm3 .
C. 64cm3 .
D. 48cm3 .
Câu 9. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un
B. Nếu lim un
C. Nếu lim un
D. Nếu lim un

!
un
= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
!
un
= a > 0 và lim vn = 0 thì lim
= +∞.
vn
= +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.

!
un
= a , 0 và lim vn = ±∞ thì lim
= 0.
vn

Câu 10. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 5 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 5 mặt. C. 6 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 6 cạnh, 6 mặt.
Câu 11. Bát diện đều thuộc loại
A. {3; 3}.
B. {4; 3}.

C. {5; 3}.

D. {3; 4}.

Câu 12. Khối chóp ngũ giác có số cạnh là
A. 11 cạnh.
B. 10 cạnh.

C. 9 cạnh.

D. 12 cạnh.

Câu 13.√Biểu thức nào sau đây khơng có nghĩa
A. (− 2)0 .
B. (−1)−1 .

C. 0−1 .


D.


−1.

−3

Trang 1/10 Mã đề 1


x2 − 5x + 6
Câu 14. Tính giới hạn lim
x→2
x−2
A. 5.
B. 0.

C. 1.

D. −1.

[ = 60◦ , S O
Câu 15. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S
√ BC) bằng

2a 57
a 57

a 57
A.
.
B.
.
C.
.
D. a 57.
19
19
17
Câu 16. Khối đa diện đều loại {3; 3} có số cạnh
A. 5.
B. 4.
C. 8.
D. 6.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 17. [3-12217d] Cho hàm số y = ln
x+1
0
y
0
y
A. xy = −e − 1.
B. xy = e + 1.
C. xy0 = ey − 1.
D. xy0 = −ey + 1.
Câu 18. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 12.

B. 27.
C. 10.

D. 3.
d = 60◦ . Đường chéo
Câu 19. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
0
0 0
0 0

BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0





2a3 6
a3 6
4a3 6
3
A.
.
B. a 6.
.
D.
.
C.
3
3
3

Câu 20. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; 8).
B. A(−4; −8)(.
C. A(4; 8).
D. A(4; −8).
x−3 x−2 x−1
x
Câu 21. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].
B. (−∞; 2).
C. [2; +∞).
D. (2; +∞).
Câu 22. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a 3
a
a
B.
.
C. .

D. a.
A. .
3
2
2
Câu 23. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là 4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là 3, phần ảo là −4.
D. Phần thực là −3, phần ảo là −4.




Câu 24. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
3
9
3
A. 0 ≤ m ≤ .
B. 0 ≤ m ≤ .
C. 0 < m ≤ .
D. m ≥ 0.
4
4
4
1
Câu 25. [1] Giá trị của biểu thức log √3
bằng
10
1

1
A. −3.
B. .
C. 3.
D. − .
3
3
Câu 26.
Z [1233d-2] Mệnh đề nào sau đây sai?
2

2

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
B.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
Z
C.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
D.
k f (x)dx = k

f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.

A.

Trang 2/10 Mã đề 1


x+3
Câu 27. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 1.
B. 2.
C. 3.
D. Vô số.
2
2
2
1 + 2 + ··· + n
Câu 28. [3-1133d] Tính lim
n3
2
1
A. 0.
B. .
C. +∞.
D. .
3
3

0 0 0 0
0
Câu 29.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 3
a 6
a 6
a 6
A.
.
B.
.
C.
.
D.
.
2
2
3
7
7n2 − 2n3 + 1
Câu 30. Tính lim 3
3n + 2n2 + 1
7
2
A. .
B. - .
C. 0.
D. 1.

3
3
Câu 31. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể
√ tích khối chóp S .ABCD là
3
3
10a
.
C. 10a3 .
D. 40a3 .
A. 20a3 .
B.
3
Câu 32. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 2).
B. (0; +∞).
C. (−∞; 0) và (2; +∞). D. (0; 2).
Câu 33. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 3.
B. V = 6.
C. V = 5.
D. V = 4.
Câu 34. Dãy số nào sau đây có giới hạn khác 0?
n+1
sin n
A.
.
B.

.
n
n

C.

1
.
n

1
D. √ .
n

Câu 35. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 6.
B. y(−2) = 22.
C. y(−2) = −18.
D. y(−2) = 2.
2n + 1
Câu 36. Tìm giới hạn lim
n+1
A. 1.
B. 3.
C. 0.
D. 2.
Câu 37.
Z Các khẳng định nào sau
Z đây là sai?

A.
Z
C.

Z

f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C. B.
f (x)dx = F(x) + C ⇒
!0
Z
Z
k f (x)dx = k
f (x)dx, k là hằng số.
D.
f (x)dx = f (x).

Câu 38. [2] Phương trình log x 4 log2
A. Vơ nghiệm.

B. 2.

Z

f (t)dt = F(t) + C.

!
5 − 12x
= 2 có bao nhiêu nghiệm thực?
12x − 8

C. 3.
D. 1.

Câu 39. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m > − .
B. − < m < 0.
C. m ≥ 0.
D. m ≤ 0.
4
4
Câu 40. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −5.
B. 6.
C. 5.
2

D. −6.
Trang 3/10 Mã đề 1


Câu 41. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
A. 3.
B. 1.
C. .

D. .
2
2
Câu 42. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (II).

B. (II) và (III).

C. Cả ba mệnh đề.

Câu 43. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [1; 2].
B. [−1; 2).
C. (−∞; +∞).

D. (I) và (III).
D. (1; 2).

Câu 44. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 9 năm.
B. 7 năm.
C. 10 năm.
D. 8 năm.

Câu 45. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 1.
C. 3.
D. Vơ nghiệm.
Câu 46.√Thể tích của tứ diện đều √
cạnh bằng a
3
3
a 2
a 2
.
B.
.
A.
6
12


a3 2
C.
.
2
!x
1
1−x

Câu 47. [2] Tổng các nghiệm của phương trình 3 = 2 +
9
A. 1 − log2 3.

B. − log2 3.
C. − log3 2.


a3 2
D.
.
4

D. log2 3.

Câu 48.
đề nào sai? Z
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh Z
A.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
B.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
Z
Z
Z
Z
C.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
D.
f (x)g(x)dx =

f (x)dx g(x)dx.
x+1
bằng
Câu 49. Tính lim
x→−∞ 6x − 2
1
A. .
B. 1.
2
2−n
Câu 50. Giá trị của giới hạn lim
bằng
n+1
A. 1.
B. 2.

C.

1
.
3

D.

1
.
6

C. −1.


D. 0.
!
3n + 2
2
Câu 51. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 3.
B. 5.
C. 4.
D. 2.
Câu 52. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
Thể tích khối chóp S .ABCD là
√ phẳng vng góc với 3(ABCD).

3
3

a 2
a 3
a 3
A.
.
B.
.
C.
.
D. a3 3.

2
4
2
Trang 4/10 Mã đề 1


Câu 53. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng số mặt của khối chóp.
B. Số đỉnh của khối chóp bằng số mặt của khối chóp.
C. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
D. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
d = 120◦ .
Câu 54. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
C. 2a.
D. 3a.
A. 4a.
B.
2
Câu 55. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1134 m.
B. 6510 m.
C. 1202 m.
D. 2400 m.
Câu 56. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi

ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 10 năm.
C. 11 năm.
D. 14 năm.

Câu 57. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là

3

a3
a3 3
a 3
3
.
B.
.
C. a 3.
.
D.
A.
12
4
3
Câu 58. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. 2.

B. − .
C. .
D. −2.
2
2
Câu 59.
Z Trong các khẳng định sau, khẳng định nào sai? Z
1
A.
0dx = C, C là hằng số.
B.
dx = ln |x| + C, C là hằng số.
x
Z
Z
xα+1
α
+ C, C là hằng số.
C.
dx = x + C, C là hằng số.
D.
x dx =
α+1
Câu 60. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tứ giác và một hình chóp ngũ giác.
B. Hai hình chóp tứ giác.
C. Một hình chóp tam giác và một hình chóp tứ giác.
D. Hai hình chóp tam giác.
Câu 61. Dãy số nào sau đây có giới hạn là 0?

n2 − 3n
n2 + n + 1
A. un =
.
B. un =
.
n2
(n + 1)2

1 − 2n
n2 − 2
C. un =
.
D. un =
.
5n + n2
5n − 3n2
a
1
Câu 62. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 2.
B. 7.
C. 4.
D. 1.
Câu 63. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =

g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
B. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
C. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Trang 5/10 Mã đề 1


Z
D. Nếu

f (x)dx =

Z
g(x)dx thì f (x) , g(x), ∀x ∈ R.


Câu 64. √Xác định phần ảo của số phức z = ( 2 + 3i)2 √
A. −6 2.
B. −7.
C. 6 2.

D. 7.


Câu 65. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích khối chóp S .ABCD là √


a3 3
a3 3
2a3 3
3
A.
.
B. a 3.
C.
.
D.
.
6
3
3
Câu 66. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng 2n+1.
B. Số đỉnh của khối chóp bằng 2n + 1.
C. Số cạnh của khối chóp bằng 2n.
D. Số mặt của khối chóp bằng số cạnh của khối chóp.
Câu 67. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
0 0
(AB0C) và
√ (A C D) bằng




2a 3
a 3
a 3
A.
.
B.
.
C.
.
D. a 3.
2
2
3
!
x+1
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
Câu 68. [3] Cho hàm số f (x) = ln 2017 − ln
x
4035
2017
2016
.
B.
.
C. 2017.
D.
.
A.

2017
2018
2018

Câu 69. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. .
B. − .
C. 3.
D. −3.
3
3
Z 3
x
a
a
Câu 70. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 28.
B. P = 4.
C. P = 16.
D. P = −2.
Câu 71. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho

tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 10 năm.
C. 11 năm.
D. 13 năm.
m
ln2 x
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
Câu 72. [3] Biết rằng giá trị lớn nhất của hàm số y =
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 135.
B. S = 24.
C. S = 22.
D. S = 32.
cos n + sin n
Câu 73. Tính lim
n2 + 1
A. 1.
B. +∞.
C. 0.
D. −∞.
Câu 74. Khối đa diện đều loại {4; 3} có số đỉnh
A. 6.
B. 8.

C. 4.


D. 10.

Câu 75. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Trang 6/10 Mã đề 1


Câu 76. Tính thể tích khối lập phương
biết tổng diện tích tất cả các mặt bằng 18.

C. 8.
D. 27.
A. 9.
B. 3 3.
q
2
Câu 77. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 1].
C. m ∈ [0; 4].
D. m ∈ [0; 2].
Câu 78. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 + 2e

1 + 2e
1 − 2e
.
B. m =
.
C. m =
.
D. m =
.
A. m =
4e + 2
4 − 2e
4e + 2
4 − 2e
Câu 79. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
B. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
2n − 3
Câu 80. Tính lim 2
bằng
2n + 3n + 1
A. 1.
B. −∞.

C. +∞.

Câu 81. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim
A. 0.


B. +∞.

C. −∞.

Câu 82. Khối đa diện đều loại {3; 4} có số mặt
A. 10.
B. 6.

C. 12.

D. 0.
un
bằng
vn
D. 1.
D. 8.

Câu 83. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4





a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
36
6
24
Câu 84. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
a 5. Thể tích khối chóp √
S .ABCD là
√ S H ⊥ (ABCD), S A =
3
3
3
2a 3
2a
4a 3
4a3
A.

.
B.
.
C.
.
D.
.
3
3
3
3
Câu 85. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. .
C. .
D. 4.
8
4
2


4n2 + 1 − n + 2
Câu 86. Tính lim
bằng
2n − 3
3
A. +∞.

B. 2.
C. .
D. 1.
2

Câu 87. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là


πa3 3
πa3 3
πa3 6
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
3
6
2
1

Câu 88. [2] Tập xác định của hàm số y = (x − 1) 5 là

A. D = (1; +∞).
B. D = R.
C. D = (−∞; 1).

D. D = R \ {1}.

Câu 89. Tứ diện đều thuộc loại
A. {3; 4}.
B. {4; 3}.

D. {3; 3}.

C. {5; 3}.

Trang 7/10 Mã đề 1


Câu 90. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 3.

B. 2.

C. 1.

D. 0.

Câu 91. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?

x→+∞
x→+∞
f (x) a
A. lim [ f (x) + g(x)] = a + b.
B. lim
= .
x→+∞
x→+∞ g(x)
b
C. lim [ f (x)g(x)] = ab.
D. lim [ f (x) − g(x)] = a − b.
x→+∞

x→+∞

1
Câu 92. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 2 < m ≤ 3.
C. 0 ≤ m ≤ 1.
D. 0 < m ≤ 1.
x−3
Câu 93. [1] Tính lim
bằng?
x→3 x + 3
A. −∞.
B. +∞.
C. 0.
D. 1.


Câu 94. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vô số.
B. 62.
C. 63.
D. 64.
Câu 95. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 27cm3 .
B. 72cm3 .
C. 46cm3 .
D. 64cm3 .
Câu 96. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 0.
B. m > 1.
C. m > −1.

D. m ≥ 0.

Câu 97. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

C. aα bα = (ab)α .
D. aαβ = (aα )β .
A. aα+β = aα .aβ .
B. β = a β .
a
Câu 98. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng

2
2
A. T = e + .
B. T = 4 + .
C. T = e + 3.
D. T = e + 1.
e
e
Z 2
ln(x + 1)
Câu 99. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 3.
B. 1.
C. −3.
D. 0.
Câu 100. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim f (x) = f (a).
B. lim+ f (x) = lim− f (x) = +∞.
x→a
x→a
x→a
C. lim+ f (x) = lim− f (x) = a.
D. f (x) có giới hạn hữu hạn khi x → a.
x→a

x→a


Câu 101. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦√. Thể tích khối chóp S .ABCD

√ là
3
3
3
3
4a 3
8a 3
a 3
8a 3
A.
.
B.
.
C.
.
D.
.
9
3
9
9
Z 1
Câu 102. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
1
A. .

4

0

B.

1
.
2

C. 1.

D. 0.
Trang 8/10 Mã đề 1


Câu 103. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
1
ab
.
B. √
.
C. √
.
D. 2
A. √
.

a + b2
a2 + b2
a2 + b2
2 a2 + b2
Câu 104. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5; 2}.
B. {2}.
C. {3}.
D. {5}.
Câu 105. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −4.
B. −2.
C. 4.
Câu 106. Khối đa diện đều loại {4; 3} có số mặt
A. 8.
B. 6.
C. 12.
!2x−1
!2−x
3
3


Câu 107. Tập các số x thỏa mãn
5
5
A. (−∞; 1].
B. (+∞; −∞).
C. [1; +∞).


D. 2.
D. 10.

D. [3; +∞).

Câu 108. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {1}.
B. D = R \ {0}.

C. D = (0; +∞).

D. D = R.

Câu 109. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 + ln x.
B. y0 = 1 − ln x.

C. y0 = x + ln x.

D. y0 = ln x − 1.

Câu 110. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (0; −2).
B. (2; 2).
C. (−1; −7).

D. (1; −3).

Câu 111. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng

được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 20 .(3)20
C 20 .(3)30
C 40 .(3)10
C 10 .(3)40
B. 50 50 .
C. 50 50 .
D. 50 50 .
A. 50 50 .
4
4
4
4
3
2
Câu 112. Tìm m để hàm số y = mx + 3x + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −2.
C. m = −1.
D. m = −3.
Câu 113. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa
√ hai đường thẳng S B và AD bằng



a 2
a 2
A.

.
B. a 3.
C. a 2.
D.
.
3
2
Câu 114. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 8 mặt.
C. 10 mặt.
D. 4 mặt.

Câu 115. [1] Biết log6 a = 2 thì log6 a bằng
A. 36.
B. 4.
C. 6.
D. 108.
Câu 116. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 2 nghiệm.
B. 1 nghiệm.
C. 3 nghiệm.

D. Vô nghiệm.

Câu 117. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 3.
B. 2.
C. 0.


D. 1.

Câu 118. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.
x−2
Câu 119. Tính lim
x→+∞ x + 3
A. −3.
B. 1.

C. Khối lập phương.

D. Khối tứ diện đều.

2
C. − .
3

D. 2.
Trang 9/10 Mã đề 1


Câu 120. Tính lim
x→2
A. 2.

x+2
bằng?
x

B. 3.

C. 1.

D. 0.

Câu 121. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
9
1
1
2
B.
.
C.
.
D. .
A. .
5
10
10
5
Câu 122.
hạn là 0?
!n Dãy số nào sau đây có !giới
!n
!n
n
1
5

4
5
A.
.
B.
.
C. − .
D.
.
3
3
3
e
Câu 123.
√ các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất của |z|
√ [4-1246d] Trong tất cả
A. 3.
B. 5.
C. 1.
D. 2.
Câu 124. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 25 m.
B. 387 m.
C. 27 m.
D. 1587 m.
Câu 125. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].

67
A. −7.
B. −4.
C.
.
D. −2.
27
Câu 126. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m ≥ 3.
C. m > 3.
D. m ≤ 3.
Câu 127. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.

C. Khối 12 mặt đều.

D. Khối lập phương.

−2x2

Câu 128. [2-c] Giá trị lớn nhất của hàm số y = xe
2
1
B. 3 .
A. √ .
e
2 e


trên đoạn [1; 2] là
1
1
C. 3 .
D. 2 .
2e
e
!
1
1
1
+ ··· +
Câu 129. [3-1131d] Tính lim +
1 1+2
1 + 2 + ··· + n
3
5
A. 2.
B. +∞.
C. .
D. .
2
2
2
Câu 130. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x + x − y − 12 = 0. Tìm giá trị nhỏ nhất của
P = xy + x + 2y + 17
A. −9.
B. −5.
C. −12.
D. −15.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B

2. A

3.

B

4.

B
D

6.

5. A
7.

B


8.

9.

B

10.

B

12.

B

D

11.
13.

C

15. A
17.
19.

C
B

21.


C

14.

D

16.

D

18.

D

20.

C

22.

C

23. A

D

24. A

25.


D

26.

D
D

27.

C

28.

29.

C

30.

31. A

B

32.

33.

D

C


34. A
36.

D

37. A

38.

D

39. A

40. A

35.

C

41.

C

42. A

43.

C


44. A

45.

B

46.

47.

B

48.

49.

D

51.

C

B
D

50.

C

52.


C

53.

B

54.

55.

B

56.

B
C

57.

D

58.

D

59.

D


60.

D

61.

62.

C

63. A

64.

C
C

65.

C

66.

67.

C

68.
1


B

D


69. A

70.

71. A

72.

B
D

73.

C

74.

B

75.

C

76.


B

77. A

78. A
80.

D

81. A

82.

D

83. A

84.

D
D

79.

B

85.

B


86.

87.

B

88. A

89.
91.

D
B
C

93.
95. A
97.

B
C

99.
101.

D

B

94.


B

96.

C

98.

C

102.

B

106.

D
B
D

110. A
B

112.

113.

D


B

114. A

B

117.

116. A
118.

C

119.

B

120. A

121.

B

122. A

123.

D

124.


125.

D

126.

127.

B

108.

C

109. A

115.

92.

104.

107.
111.

B

100. A


103. A
105.

90.

C

C
B

128.

B

129. A

130.

2

D
C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×