Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg 3 (956)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.52 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều rộng
bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 1200 cm2 .
C. 160 cm2 .
D. 160 cm2 .
Câu 2. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 1.
B. m > 0.
C. m ≥ 0.
D. m > −1.
!
!
!
1
2
2016
4x
Câu 3. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f


4 +2
2017
2017
2017
2016
A. T = 2016.
B. T = 2017.
C. T =
.
D. T = 1008.
2017
2−n
Câu 4. Giá trị của giới hạn lim
bằng
n+1
A. 0.
B. 2.
C. 1.
D. −1.
Câu 5. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 3.
B. −3.
C. 0.
D. −6.
Câu 6. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối lập phương.

C. Khối bát diện đều.


D. Khối tứ diện đều.

Câu 7. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể tích của khối chóp S .ABC√ theo a


a3 15
a3 15
a3 5
a3
.
B.
.
C.
.
D.
.
A.
3
5
25
25
Câu 8. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 13.
C. 9.

D. 0.

Câu 9. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng

thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 5%.
B. 0, 8%.
C. 0, 6%.
D. 0, 7%.
Câu 10.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ
√ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 2.
B. 2.
C. 10.
D. 1.
[ = 60◦ , S O
Câu 11. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S√BC) bằng

a 57
a 57
2a 57
A.
.
B.
.
C.
.
D. a 57.
19

17
19
Câu 12. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 12.
B. ln 14.
C. ln 4.
D. ln 10.
x+1
Câu 13. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. .
B. .
C. 3.
D. 1.
3
4
Câu 14. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = ln x − 1.
B. y0 = 1 − ln x.

C. y0 = x + ln x.

D. y0 = 1 + ln x.
Trang 1/10 Mã đề 1


Câu 15. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình

nhất?
A. 2.

B. 3.

1
3|x−1|

C. 4.

= 3m − 2 có nghiệm duy

D. 1.

Câu 16. Cho
Z hai hàm yZ= f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
B. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
0
C. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.

Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Câu 17. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 16 tháng.
B. 15 tháng.
C. 18 tháng.
D. 17 tháng.
1
Câu 18. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 2 < m ≤ 3.
C. 0 < m ≤ 1.
D. 0 ≤ m ≤ 1.
Câu 19. Khối đa diện đều loại {3; 4} có số đỉnh
A. 4.
B. 8.

C. 6.

D. 10.

Câu 20. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có

thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 21.
C. 24.
D. 23.
Câu 21. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −5.
B. −6.
C. 6.

D. 5.

Câu 22. Khối đa diện đều loại {5; 3} có số mặt
A. 12.
B. 20.

D. 8.

2

C. 30.

Câu 23. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
A. y = log 41 x.
B. y = log π4 x.
C. y = log √2 x.

D. y = loga x trong đó a =



3 − 2.

Câu 24. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD

√ là
8a3 3
8a3 3
4a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
3
9
9
9
x−1
Câu 25. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác đều ABI có hai đỉnh A, √
B thuộc (C), đoạn thẳng √
AB có độ dài bằng


A. 2.
B. 2 2.
C. 6.
D. 2 3.
Câu 26. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối lập phương.

C. Khối tứ diện đều.
√3
4
Câu 27. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
2
5
A. a 3 .
B. a 3 .
C. a 8 .

D. Khối 12 mặt đều.
7

D. a 3 .
Trang 2/10 Mã đề 1


Câu 28. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m ≥ 3.

C. m < 3.
D. m > 3.
Câu 29. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 2.
C. Vô nghiệm.
5
Câu 30. Tính lim
n+3
A. 0.
B. 3.
C. 2.

D. 3.

D. 1.

Câu 31. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 − 2e
1 + 2e
1 + 2e
.
B. m =
.
C. m =
.
D. m =
.
A. m =

4 − 2e
4e + 2
4 − 2e
4e + 2
[ = 60◦ , S A ⊥ (ABCD).
Câu 32. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh S C là a. Thể tích khối√chóp S .ABCD là


a3 2
a3 3
a3 2
3
A.
C.
.
B. a 3.
.
D.
.
12
6
4
1
bằng
Câu 33. [1] Giá trị của biểu thức log √3
10
1
1
A. −3.

B. 3.
C. .
D. − .
3
3
1
Câu 34. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = −3.
B. m = −3, m = 4.
C. −3 ≤ m ≤ 4.
D. m = 4.
2
x − 12x + 35
Câu 35. Tính lim
x→5
25 − 5x
2
2
A. − .
B. +∞.
C. −∞.
D. .
5
5
x−2
Câu 36. Tính lim
x→+∞ x + 3

2
A. − .
B. 2.
C. −3.
D. 1.
3
Câu 37. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều sai.
B. Cả hai đều đúng.

C. Chỉ có (I) đúng.

D. Chỉ có (II) đúng.

Câu 38. [2] Cho hình chóp S .ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng



a 2
a 2
A.
.
B. a 3.
C.
.
D. a 2.

3
2
2
2x
Câu 39. [2-c] Giá trị nhỏ nhất của hàm số y = (x − 2)e trên đoạn [−1; 2] là
A. −2e2 .
B. −e2 .
C. 2e4 .
D. 2e2 .
Câu 40. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,
√ N, P bằng



14 3
20 3
A.
.
B. 6 3.
C. 8 3.
D.
.
3
3
Trang 3/10 Mã đề 1


Câu 41. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng

1
1
A. V = S h.
B. V = S h.
C. V = S h.
3
2

D. V = 3S h.

2

Câu 42. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 8.
B. 5.
C. 7.
!4x
!2−x
3
2


Câu 43. Tập các số x thỏa mãn
3
2
"
!
#
"
!

2
2
2
A.
; +∞ .
B. −∞; .
C. − ; +∞ .
5
3
3

D. 6.

#
2
D. −∞; .
5

Câu 44. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
5a
a
8a
2a
A.
.
B. .
C.
.

D.
.
9
9
9
9
Câu 45. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 12.
B. 10.
C. 4.
D. 11.
Câu 46. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −4.
B. 4.
C. 2.
log 2x

Câu 47. [1229d] Đạo hàm của hàm số y =
x2
1
1 − 2 log 2x
1 − 2 ln 2x
.
B. y0 = 3
.
C. y0 =
A. y0 = 3
.
x ln 10

2x ln 10
x3
Câu 48. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 3}.
C. {3; 4}.
n−1
Câu 49. Tính lim 2
n +2
A. 3.
B. 2.
C. 1.
!
x+1
Câu 50. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) +
x
4035
2017
A. 2017.
B.
.
C.
.
2018
2018
Câu 51. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
A. − 2 .

B. −e.
C. − .
e
2e
2
0
Câu 52. [2] Cho hàm số f (x) = x ln x. Giá trị f (e) bằng

D. −2.

D. y0 =

1 − 4 ln 2x
.
2x3 ln 10

D. {5; 3}.

D. 0.
f 0 (2) + · · · + f 0 (2017)
D.

2016
.
2017

1
D. − .
e


2
.
e
Câu 53. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp tứ giác.
B. Hai khối chóp tứ giác.
C. Một khối chóp tam giác, một khối chóp ngữ giác.
D. Hai khối chóp tam giác.
A. 3.

B. 2e + 1.

4x + 1
Câu 54. [1] Tính lim
bằng?
x→−∞ x + 1
A. 4.
B. −4.
Câu 55.
√ Tìm giá trị lớn nhất của hàm số y =
A. 2 3.
B. 3.

C. 2e.



C. −1.

x + 3 + 6 −√x

C. 2 + 3.

D.

D. 2.

D. 3 2.
Trang 4/10 Mã đề 1


x−1 y z+1
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x + y − z = 0.
B. 2x − y + 2z − 1 = 0.
C. −x + 6y + 4z + 5 = 0.
D. 10x − 7y + 13z + 3 = 0.

Câu 56. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình

Câu 57.! Dãy số nào sau đây có giới
!n hạn là 0?
n
4
1

A.
.
B.
.
e
3

!n
5
C.
.
3

!n
5
D. − .
3

Câu 58. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 0.

B. 1.

C. 2.

D. 3.


Câu 59. Trong các khẳng định sau, khẳng định nào sai?
A. Cả ba đáp án trên.
B. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
C. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
Câu 60. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim− f (x) = f (b).
B. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a

x→b

x→a

x→b

C. lim+ f (x) = f (a) và lim+ f (x) = f (b).

x→a

x→b

x→a

x→b

D. lim+ f (x) = f (a) và lim− f (x) = f (b).


x2 −4x+5

Câu 61. [2] Tổng các nghiệm của phương trình 3
A. 4.
B. 3.
log7 16
Câu 62. [1-c] Giá trị của biểu thức
log7 15 − log7
A. 4.
B. −2.

= 9 là
C. 5.

15
30

D. 2.

bằng
C. 2.

D. −4.

Câu 63. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B. Số đỉnh của khối chóp bằng số mặt của khối chóp.
C. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh của khối chóp bằng số mặt của khối chóp.
Câu 64. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là

A. Phần thực là −1, phần ảo là −4.
B. Phần thực là 4, phần ảo là 1.
C. Phần thực là −1, phần ảo là 4.
D. Phần thực là 4, phần ảo là −1.
Câu 65. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m > 0.
B. m < 0.
C. m , 0.

D. m = 0.

Câu 66. Cho hàm số y = x − 2x + x + 1.
! Mệnh đề nào dưới đây đúng?
1
A. Hàm số đồng biến trên khoảng ; 1 .
B. Hàm số nghịch biến trên khoảng (1; +∞).
3
!
!
1
1
C. Hàm số nghịch biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng −∞; .
3
3
3

2

Trang 5/10 Mã đề 1



Câu 67. Khối đa diện đều loại {4; 3} có số cạnh
A. 30.
B. 12.
C. 10.
D. 20.
x−3 x−2 x−1
x
Câu 68. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].
B. (2; +∞).
C. (−∞; 2).
D. [2; +∞).
Câu 69. Tứ diện đều thuộc loại
A. {3; 4}.
B. {4; 3}.

C. {5; 3}.

D. {3; 3}.


x2

Câu 70. [2] Tổng các nghiệm của phương trình 3 x−1 .2 = 8.4 x−2 là
A. 3 − log2 3.
B. 1 − log3 2.
C. 1 − log2 3.

D. 2 − log2 3.

Câu 71. Cho
√ số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
A. |z| = 17.
B. |z| = 10.
C. |z| = 10.
D. |z| = 17.
q
2
Câu 72. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [0; 1].
C. m ∈ [−1; 0].
D. m ∈ [0; 4].
π
Câu 73. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3


trị của biểu √
thức T = a + b 3.

A. T = 2 3.
B. T = 3 3 + 1.
C. T = 2.
D. T = 4.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 74. [3-12217d] Cho hàm số y = ln
x+1
0
y
0
y
A. xy = −e + 1.
B. xy = e − 1.
C. xy0 = ey + 1.
D. xy0 = −ey − 1.
Câu 75. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
B. −2.
C. − .
A. .
2
2

D. 2.


Câu 76. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một hoặc hai.
B. Có hai.
C. Có một.
D. Khơng có.


4n2 + 1 − n + 2
Câu 77. Tính lim
bằng
2n − 3
3
A. .
B. 2.
C. 1.
D. +∞.
2
9x
Câu 78. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. 2.
B. .
C. 1.
D. −1.
2
Câu 79. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?

A. 8.
B. 6.
C. 4.
D. 3.
Câu 80. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 1.
B. 4 − 2 ln 2.
C. −2 + 2 ln 2.

D. e.

Câu 81. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 24 m.
B. 16 m.
C. 12 m.
D. 8 m.
Trang 6/10 Mã đề 1


Câu 82. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. Vơ nghiệm.
B. 3 nghiệm.
C. 2 nghiệm.

D. 1 nghiệm.

Câu 83. Khối đa diện đều loại {5; 3} có số cạnh
A. 20.
B. 12.


D. 30.

C. 8.

Câu 84. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lập phương.
B. Hình chóp.
C. Hình lăng trụ.
Câu 85. Tính lim
A. 1.

2n2 − 1
3n6 + n4
B. 0.

C.

2
.
3

D. Hình tam giác.

D. 2.

Câu 86. Giá√trị cực đại của hàm số y√= x3 − 3x2 − 3x + 2

A. −3 + 4 2.
B. 3 + 4 2.

C. −3 − 4 2.


D. 3 − 4 2.

Câu 87. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.




5 13
A. 26.
.
C. 2.
B.
D. 2 13.
13
Câu 88. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 89. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).
Câu 90. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3

A. S = 32.
B. S = 24.

m
ln2 x
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e

C. S = 22.

D. S = 135.

Câu 91.
f (x), g(x) liên
Z Cho hàm số Z
Z tục trên R. Trong cácZmệnh đề sau, mệnh
Z đề nào sai?
A.
f (x)g(x)dx =
f (x)dx g(x)dx.
B.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
Z
Z
Z
Z
Z
Z

C.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
D.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Câu 92. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 7, 2.
B. 0, 8.
C. −7, 2.

D. 72.

Câu 93. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 3
a3 5
a3 5
a3 5
A.
.
B.
.
C.
.
D.
.
12
12

6
4
Câu 94. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của hình chóp S .ABCD với√mặt phẳng (AIC) có diện√tích là

2
a 2
11a2
a2 5
a2 7
A.
.
B.
.
C.
.
D.
.
4
32
16
8


Câu 95. [12215d] Tìm m để phương trình 4 x+
3
9
A. 0 < m ≤ .

B. 0 ≤ m ≤ .
4
4

1−x2



− 3m + 4 = 0 có nghiệm
3
C. 0 ≤ m ≤ .
D. m ≥ 0.
4

− 4.2 x+

1−x2

Trang 7/10 Mã đề 1


Câu 96. Hàm số y =
A. x = 3.

x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 0.

C. x = 1.


D. x = 2.

Câu 97. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 91cm3 .
B. 64cm3 .
C. 84cm3 .
D. 48cm3 .
log(mx)
Câu 98. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m ≤ 0.
B. m < 0 ∨ m > 4.
C. m < 0.
D. m < 0 ∨ m = 4.
Câu 99. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m ≥ 3.
C. m ≤ 3.
D. m > 3.
Câu 100. Dãy số nào sau đây có giới hạn khác 0?
1
1
A. √ .
B. .
n
n


C.

n+1
.
n

D.

sin n
.
n

Câu 101. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 27cm3 .
B. 46cm3 .
C. 72cm3 .
D. 64cm3 .
Câu 102. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 10 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
log2 240 log2 15

+ log2 1 bằng
log3,75 2 log60 2
B. 1.
C. 3.


Câu 103. [1-c] Giá trị biểu thức
A. 4.

D. −8.

Câu 104. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
√ góc với đáy, S C = a3 3. Thể tích khối chóp S .ABCD là

3
3
a 3
a
a
3
A.
.
B.
.
C. a3 .
D.
.
3
3
9
Câu 105. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 9 lần.

B. Tăng gấp 27 lần.
C. Tăng gấp 18 lần.
D. Tăng gấp 3 lần.
Câu 106. Tính
z biết (1 + 2i)z2 = 3 + 4i.
√ mô đun của số phức √
B. |z| = 5.
C. |z| = 5.
A. |z| = 2 5.

√4
5.
q
Câu 107. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x + log23 x + 1 + 4m −
√ i
h
1 = 0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [−1; 0].
C. m ∈ [0; 4].
D. m ∈ [0; 2].
D. |z| =

Câu 108. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :

=
=
2
3
−5
3
−2
−1
x y−2 z−3
x y z−1
A. =
=
.
B. = =
.
2
3
−1
1 1
1
x−2 y−2 z−3
x−2 y+2 z−3
C.
=
=
.
D.
=
=
.

2
3
4
2
2
2
3
2
x
Câu 109. [2]
√ của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng 8
√ Tìm m để giá trị lớn nhất
A. m = ± 3.
B. m = ± 2.
C. m = ±1.
D. m = ±3.

Trang 8/10 Mã đề 1


3
2
x
Câu 110. [2]
√ Tìm m để giá trị nhỏ nhất của hàm số y = 2x + (m
√ + 1)2 trên [0; 1] bằng 2
A. m = ± 2.
B. m = ±3.
C. m = ± 3.
D. m = ±1.


Câu 111. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n3 lần.
B. n3 lần.
C. 2n2 lần.
D. n3 lần.
Câu 112. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 113. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −3 ≤ m ≤ 3.
B. m ≥ 3.
C. −2 ≤ m ≤ 2.
D. m ≤ 3.
Câu 114. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
B. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 115. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
B. m ≥ .
C. m < .
D. m > .

A. m ≤ .
4
4
4
4
Câu 116. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
13
23
9
5
A.
.
B. −
.
C.
.
D. − .
100
100
25
16
12 + 22 + · · · + n2
n3
2
B. .
3

Câu 117. [3-1133d] Tính lim
A. +∞.


C. 0.

D.

1
.
3

Câu 118. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) trên khoảng (a; b).
B. Cả ba câu trên đều sai.
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
Câu 119. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó
Q0 là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số
lượng vi khuẩn đạt 100.000 con?
A. 3, 55.
B. 20.
C. 15, 36.
D. 24.
Câu 120. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 2).
B. (−∞; 0) và (2; +∞). C. (0; 2).
D. (0; +∞).
Z 3
a
a
x

dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
Câu 121. Cho I =

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 28.
B. P = 4.
C. P = 16.
D. P = −2.
Câu 122. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R \ {1; 2}.
B. D = [2; 1].
C. D = (−2; 1).
2

D. D = R.
Trang 9/10 Mã đề 1


Câu 123.
Các khẳngZđịnh nào sau đây là sai?
Z
A.
Z
C.

Z


k f (x)dx = k
f (x)dx, k là hằng số.
!0
f (x)dx = f (x).

B.
Z
D.

Câu 124. Khối đa diện đều loại {4; 3} có số mặt
A. 10.
B. 6.

f (x)dx = F(x) +C ⇒

Z

f (u)dx = F(u) +C.

f (x)dx = F(x) + C ⇒

Z

f (t)dt = F(t) + C.

C. 8.

Câu 125. Cho f (x) = sin x − cos x − x. Khi đó f (x) bằng
A. −1 + sin x cos x.
B. 1 − sin 2x.

C. 1 + 2 sin 2x.
2

D. 12.

0

2

D. −1 + 2 sin 2x.

Câu 126. Dãy!số nào có giới hạn bằng 0?
n
−2
.
B. un = n2 − 4n.
A. un =
3

!n
6
C. un =
.
5

D. un =

2n + 1
Câu 127. Tìm giới hạn lim
n+1

A. 0.
B. 3.

C. 2.

D. 1.

n3 − 3n
.
n+1

Câu 128. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng

1
C. f 0 (0) =
.
D. f 0 (0) = 1.
ln 10


2

1

3i lần lượt√l
Câu 129. Phần thực

phần
ảo
của

số
phức
z
=



A. Phần thực là √2 − 1, phần ảo là √
3.
B. Phần thực là 2, √
phần ảo là 1 − √
3.
C. Phần thực là 2 − 1, phần ảo là − 3.
D. Phần thực là 1 − 2, phần ảo là − 3.
A. f 0 (0) = 10.

B. f 0 (0) = ln 10.

Câu 130. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 10.
B. 27.
C. 3.

D. 12.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1



ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
C

1.
3.
5.

D
B
D

9.
C

11.
13.

D

17. A

D

C

D

10.


D
B

14.

D

16.

D
B

20. A

21. A

22. A
C

23.
25.

D
B

29. A

24.


B

26.

B

28.

B

30. A
32.

B

33.

D

34.

35.

D

36.

37.

D


38.

39.

C

8.

18.

19.

31.

4.

12.

B

15.

27.

D

6.
C


7.

2.

40.

B

41. A
43.

C

D
B
D
C
B

42.

C

44.

C

45. A

46.


D

47. A

48.

D

49.

D

51.

50.

C

52. A

53. A

54. A

55.
57.

D


56.
58.

B

59.

D

61. A
63.

B

65.
67.

C

C

D

62.

D

64.

D


68.
1

C

60.

66.

B

D

C
D


69.
71.

C

C

80.

D

D


82.

B

C

84.

D

85.

B

86. A

87.

B

88.

89. A

90. A

91. A

92.


D
C
C
D

94.

B
C

95.

B

78.

C

83.

93.

C

76. A

79.
81.


74.

B

77.

D

72.
D

73.
75.

70.

D

C

96.

97.

B

98.

99.


B

100.

101. A

D
C

102. A

103.

D

104.

105.

B

106.

107.

B

108.

109.


B

110.

111.

D

114. A

115. A

116.
D

119.

B
D

B

118.

C

120.

121.


B

122.

123.

B

124.

125.

D

112. A

113. A
117.

B

D

D
B
D
B

126. A


127.

C

128.

129.

C

130.

2

B
C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×