TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
A. 2.
B. .
C. −2.
2
√
Câu 2. [1] Biết log6 a = 2 thì log6 a bằng
A. 108.
B. 6.
C. 36.
1
D. − .
2
D. 4.
Câu 3. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 24 m.
B. 12 m.
C. 8 m.
D. 16 m.
[ = 60◦ , S O
Câu 4. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ Khoảng cách từ A đến (S BC) bằng
√
√ với mặt đáy và S O = a.
√
a 57
2a 57
a 57
.
B.
.
C. a 57.
D.
.
A.
17
19
19
2
Câu 5. Tính√mơ đun của số phức z biết
√4 (1 + 2i)z = 3 + 4i.
√
B. |z| = 5.
C. |z| = 5.
D. |z| = 5.
A. |z| = 2 5.
1
Câu 6. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 0 < m ≤ 1.
C. 2 < m ≤ 3.
D. 2 ≤ m ≤ 3.
2
3
7n − 2n + 1
Câu 7. Tính lim 3
3n + 2n2 + 1
2
7
A. - .
B. 0.
C. .
D. 1.
3
3
Câu 8. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 15 tháng.
B. 17 tháng.
C. 16 tháng.
D. 18 tháng.
1
Câu 9. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; 3).
B. (1; +∞).
C. (−∞; 3).
D. (−∞; 1) và (3; +∞).
Z 1
6
2
3
Câu 10. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
. Tính
f (x)dx.
0
3x + 1
A. −1.
B. 6.
C. 2.
D. 4.
Câu 11. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + .
B. T = e + 1.
C. T = e + 3.
D. T = 4 + .
e
e
Câu 12. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
a 5. Thể tích khối chóp √
S .ABCD là
√ S H ⊥ (ABCD), S A =
3
3
3
4a 3
2a
2a 3
4a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
√
Câu 13. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. 3.
B. − .
C. −3.
D. .
3
3
Trang 1/10 Mã đề 1
Câu 14. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (II) sai.
B. Không có câu nào C. Câu (I) sai.
D. Câu (III) sai.
sai.
!
!
!
4x
1
2
2016
Câu 15. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 2017.
B. T =
.
C. T = 1008.
D. T = 2016.
2017
8
Câu 16. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 81.
B. 64.
C. 96.
D. 82.
Câu 17.
các khẳng định sau, khẳng định nào sai?
Z Trong
u0 (x)
A.
dx = log |u(x)| + C.
u(x)
B. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
C. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
D. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Câu 18. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 4.
C. 8.
D. 5.
Câu 19. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ tứ giác đều là hình lập phương.
C. Hình lăng trụ đứng là hình lăng trụ đều.
D. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
Câu 20. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 15, 36.
B. 20.
C. 24.
D. 3, 55.
Câu 21. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (2; 2).
B. (1; −3).
C. (−1; −7).
Câu 22. [1-c] Giá trị của biểu thức
A. 4.
log7 16
log7 15 − log7
B. −4.
Câu 23. Dãy số nào sau đây có giới hạn khác 0?
1
1
A. √ .
B. .
n
n
15
30
D. (0; −2).
bằng
C. 2.
C.
sin n
.
n
Câu 24. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 10 mặt.
B. 6 mặt.
C. 8 mặt.
D. −2.
D.
n+1
.
n
D. 4 mặt.
Trang 2/10 Mã đề 1
Câu 25. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là
√
√
√
3
4a3 3
2a3 3
a3 3
5a 3
.
B.
.
C.
.
D.
.
A.
3
3
3
2
Câu 26. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m ≤ 3.
C. m ≥ 3.
D. m > 3.
x2
Câu 27. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
B. M = e, m = 0.
C. M = e, m = .
D. M = e, m = 1.
A. M = , m = 0.
e
e
Câu 28. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = S h.
C. V = S h.
D. V = 3S h.
3
2
Câu 29. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 3 mặt.
C. 9 mặt.
D. 4 mặt.
π
Câu 30. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3
√
trị của biểu √
thức T = a + b 3.
√
A. T = 3 3 + 1.
B. T = 2.
C. T = 4.
D. T = 2 3.
Câu 31. Khối đa diện đều loại {3; 4} có số đỉnh
A. 4.
B. 8.
C. 6.
D. 10.
Câu 32. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 − 2e
1 − 2e
1 + 2e
.
B. m =
.
C. m =
.
D. m =
.
A. m =
4e + 2
4 − 2e
4 − 2e
4e + 2
Câu 33. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (3; 4; −4).
B. ~u = (2; 1; 6).
C. ~u = (2; 2; −1).
D. ~u = (1; 0; 2).
Câu 34. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 1.
B. 5.
C. 2.
D. 3.
Câu 35. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
A. y = log √2 x.
B. y = log 14 x.
C. y = log π4 x.
4x + 1
Câu 36. [1] Tính lim
bằng?
x→−∞ x + 1
A. 2.
B. −1.
D. y = loga x trong đó a =
C. 4.
√
3 − 2.
D. −4.
Câu 37.
√ [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 10.
B. 2.
C. 2.
D. 1.
Câu 38. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 1.
B. Vô số.
C. 2.
D. 3.
Câu 39. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
Trang 3/10 Mã đề 1
A. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→b
C. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a
B. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a
x→b
D. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→b
x→b
[ = 60◦ , S O
Câu 40. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S
√ BC) bằng
√
√
a 57
a 57
2a 57
A. a 57.
B.
.
C.
.
D.
.
19
17
19
2−n
bằng
Câu 41. Giá trị của giới hạn lim
n+1
A. 2.
B. −1.
C. 1.
D. 0.
Câu 42. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
√
√
Câu 43. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
9
3
3
A. 0 ≤ m ≤ .
B. m ≥ 0.
C. 0 < m ≤ .
D. 0 ≤ m ≤ .
4
4
4
Câu 44. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn mặt.
B. Năm mặt.
C. Ba mặt.
D. Hai mặt.
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
Câu 45. [3-1132d] Cho dãy số (un ) với un =
n2 + 1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = 1.
1
C. lim un = .
D. lim un = 0.
2
Câu 46. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 3.
C. Vô nghiệm.
D. 2.
mx − 4
Câu 47. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 67.
B. 34.
C. 26.
D. 45.
Z 2
ln(x + 1)
Câu 48. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. −3.
B. 1.
C. 0.
D. 3.
[ = 60◦ , S A ⊥ (ABCD).
Câu 49. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối
√chóp S .ABCD là
√
a3 2
a3 2
a3 3
.
B.
.
C.
.
D. a3 3.
A.
12
4
6
2
2
Câu 50. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −6.
B. −5.
C. 5.
2
0
0
D. 6.
0
Câu 51. [4-1214h] Cho khối lăng trụ ABC.A B C , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng
√
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3 √
√
2 3
A. 3.
B. 2.
C.
.
D. 1.
3
Câu 52. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 8.
C. 6.
D. 4.
2
x − 5x + 6
Câu 53. Tính giới hạn lim
x→2
x−2
A. 0.
B. 1.
C. −1.
D. 5.
Trang 4/10 Mã đề 1
Câu 54. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = [2; 1].
B. D = R \ {1; 2}.
C. D = R.
2
Câu 55. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
n2 − 2
A. un =
.
B.
u
=
.
n
n2
5n − 3n2
C. un =
n2 + n + 1
.
(n + 1)2
3
2
Câu 56. Giá
√ trị cực đại của hàm số y√= x − 3x − 3x + 2
√
A. 3 − 4 2.
B. 3 + 4 2.
C. −3 + 4 2.
D. D = (−2; 1).
D. un =
1 − 2n
.
5n + n2
√
D. −3 − 4 2.
Câu 57. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m ≤ .
C. m < .
D. m ≥ .
4
4
4
4
◦
d = 30 , biết S BC là tam giác đều
Câu 58. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
26
16
9
13
Câu 59.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nào sai?
A.
Z
C.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
Z
f (x)g(x)dx =
f (x)dx g(x)dx.
k f (x)dx = f
B.
Z
D.
f (x)dx, k ∈ R, k , 0.
Z
Z
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
ln x p 2
1
Câu 60. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
1
8
8
A. .
B. .
C. .
D. .
9
3
9
3
2x + 1
Câu 61. Tính giới hạn lim
x→+∞ x + 1
1
A. 2.
B. 1.
C. −1.
D. .
2
3
2
Câu 62. Tập xác định của hàm số f (x) = −x + 3x − 2 là
A. [−1; 2).
B. (−∞; +∞).
C. (1; 2).
D. [1; 2].
Câu 63. Khối đa diện đều loại {4; 3} có số cạnh
A. 10.
B. 20.
C. 12.
D. 30.
Câu 64. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 2e.
B. .
C. 3.
D. 2e + 1.
e
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 65. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là
√
√
3
√
a3 2
a3 3
a
3
A.
.
B.
.
C. 2a2 2.
D.
.
24
12
24
Câu 66. Phát biểu nào sau đây là sai?
1
B. lim un = c (Với un = c là hằng số).
A. lim √ = 0.
n
1
C. lim qn = 1 với |q| > 1.
D. lim k = 0 với k > 1.
n
1
Câu 67. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2] ∪ [−1; +∞). B. (−∞; −2) ∪ (−1; +∞). C. −2 ≤ m ≤ −1.
D. −2 < m < −1.
Trang 5/10 Mã đề 1
2
Câu 68. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 4.
B. 3.
C. 2.
D. 5.
Câu 69. Khối đa diện đều loại {3; 5} có số đỉnh
A. 20.
B. 30.
D. 12.
C. 8.
Câu 70. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng
√
√
√
2a 3
a 3
a 3
.
B.
.
C.
.
D. a 3.
A.
2
2
3
Câu 71. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Nhị thập diện đều. B. Thập nhị diện đều. C. Tứ diện đều.
D. Bát diện đều.
x+2
bằng?
Câu 72. Tính lim
x→2
x
A. 0.
B. 2.
C. 1.
D. 3.
Câu 73. Hàm số nào sau đây khơng có cực trị
1
x−2
.
C. y = x3 − 3x.
D. y = x + .
A. y = x4 − 2x + 1.
B. y =
2x + 1
x
3
2
Câu 74. Cho hàm số y = x − 3x + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −3.
B. 0.
C. 3.
D. −6.
Z 1
Câu 75. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0
1
1
.
C. .
D. 1.
4
2
Câu 76. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
2
9
1
1
A. .
B.
.
C.
.
D. .
5
10
10
5
A. 0.
B.
2
2
Câu 77. [3-c]
và giá trị lớn nhất của hàm số f (x) = 2sin x + 2cos x lần
√ lượt là
√ Giá trị nhỏ nhất √
B. 2 và 3.
C. 2 và 3.
D. 2 2 và 3.
A. 2 và 2 2.
1
Câu 78. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = −ey − 1.
B. xy0 = ey − 1.
C. xy0 = −ey + 1.
D. xy0 = ey + 1.
Câu 79. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 8.
B. 6.
C. 4.
D. 3.
2
2n − 1
Câu 80. Tính lim 6
3n + n4
2
A. 0.
B. 1.
C. 2.
D. .
3
3
Câu 81. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 120 cm2 .
C. 160 cm2 .
D. 1200 cm2 .
Câu 82. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 91cm3 .
B. 84cm3 .
C. 48cm3 .
D. 64cm3 .
Câu 83. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.
B. lim f (x) = f (a).
x→a
x→a
x→a
C. f (x) có giới hạn hữu hạn khi x → a.
D. lim+ f (x) = lim− f (x) = a.
x→a
x→a
Trang 6/10 Mã đề 1
Câu 84. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) = 10.
B. f 0 (0) =
.
C. f 0 (0) = ln 10.
D. f 0 (0) = 1.
ln 10
Z 3
a
a
x
Câu 85. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
√
d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 28.
B. P = −2.
C. P = 4.
D. P = 16.
Câu 86. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. 3n3 lần.
B. n lần.
C. n3 lần.
D. n2 lần.
log 2x
Câu 87. [1229d] Đạo hàm của hàm số y =
là
x2
1
1 − 4 ln 2x
1 − 2 ln 2x
1 − 2 log 2x
0
0
A. y0 = 3
.
B. y0 =
.
C.
y
=
.
D.
y
=
.
2x ln 10
2x3 ln 10
x3 ln 10
x3
Câu 88. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 10 cạnh, 6 mặt.
Câu 89. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x y−2 z−3
x y z−1
A. =
=
.
B. = =
.
2
3
−1
1 1
1
x−2 y−2 z−3
x−2 y+2 z−3
=
=
.
D.
=
=
.
C.
2
2
2
2
3
4
Câu 90. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lăng trụ.
B. Hình chóp.
C. Hình lập phương.
D. Hình tam giác.
Câu 91.
√ Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.
A. 3 3.
B. 9.
C. 8.
D. 27.
Câu 92. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
B. Cả ba đáp án trên.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
√
D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
Câu 93. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 + 2 sin 2x.
B. −1 + sin x cos x.
C. −1 + 2 sin 2x.
D. 1 − sin 2x.
x−1 y z+1
= =
và
Câu 94. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x − y + 2z − 1 = 0.
B. 10x − 7y + 13z + 3 = 0.
C. 2x + y − z = 0.
D. −x + 6y + 4z + 5 = 0.
!x
1
1−x
Câu 95. [2] Tổng các nghiệm của phương trình 3 = 2 +
là
9
A. log2 3.
B. 1 − log2 3.
C. − log3 2.
D. − log2 3.
Câu 96. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −2e2 .
B. 2e2 .
C. −e2 .
D. 2e4 .
Trang 7/10 Mã đề 1
Câu 97. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 3.
B. 1.
C. 2.
1
3|x−1|
= 3m − 2 có nghiệm duy
D. 4.
Câu 98. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
B. aαβ = (aα )β .
C. aα bα = (ab)α .
D. aα+β = aα .aβ .
A. β = a β .
a
Câu 99. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1134 m.
B. 1202 m.
C. 2400 m.
D. 6510 m.
Câu 100.
định nào sau đây là sai?
!0
Z Các khẳng
A.
f (x)dx = f (x).
Z
Z
C.
k f (x)dx = k
f (x)dx, k là hằng số.
Z
B.
Z
D.
f (x)dx = F(x) +C ⇒
Z
f (u)dx = F(u) +C.
f (x)dx = F(x) + C ⇒
Z
f (t)dt = F(t) + C.
Câu 101. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
√
√
√
√
a 6
A. a 3.
.
B. 2a 6.
C. a 6.
D.
2
π π
Câu 102. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. −1.
B. 7.
C. 3.
D. 1.
Câu 103.
√ Thể tích của tứ diện đều
√cạnh bằng a
√
√
3
3
a 2
a 2
a3 2
a3 2
A.
.
B.
.
C.
.
D.
.
2
4
6
12
Câu 104. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m < 3.
C. m ≥ 3.
D. m > 3.
Câu 105. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa hai đường thẳng BD và√S C bằng
√
√
√
a 6
a 6
a 6
B.
.
C.
.
D.
.
A. a 6.
6
3
2
Câu 106. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
A. .
B. 2.
C. 1.
D.
.
2
2
Câu 107. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 5
a3 5
a3 3
A.
.
B.
.
C.
.
D.
.
6
12
4
12
Câu 108. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng
√
a
a 3
a
A. .
B.
.
C. .
D. a.
3
2
2
Câu 109. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m ≥ .
C. m < .
D. m > .
4
4
4
4
Câu 110. Khối đa diện đều loại {5; 3} có số cạnh
A. 8.
B. 30.
C. 12.
D. 20.
Trang 8/10 Mã đề 1
Câu 111. Tính diện tích hình phẳng
giới hạn bởi các đường y = xe x , y = 0, x = 1.
√
1
3
3
B.
.
C. 1.
D. .
A. .
2
2
2
Câu 112. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
√
1
A. 5.
B. .
C. 25.
D. 5.
5
1 − xy
Câu 113. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ
x + 2y
nhất Pmin của P√= x + y.
√
√
√
9 11 − 19
9 11 + 19
2 11 − 3
18 11 − 29
. B. Pmin =
. C. Pmin =
. D. Pmin =
.
A. Pmin =
21
9
9
3
x = 1 + 3t
Câu 114. [1232h] Trong không gian Oxyz, cho đường thẳng d :
y = 1 + 4t . Gọi ∆ là đường thẳng đi
z = 1
qua điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
trình là
x
=
1
+
7t
x
=
−1
+
2t
x
=
1
+
3t
x = −1 + 2t
A.
.
B.
D.
y=1+t
y = −10 + 11t . C.
y = 1 + 4t .
y = −10 + 11t .
z = 1 + 5t
z = 6 − 5t
z = 1 − 5t
z = −6 − 5t
√
2
Câu 115. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 3 − log2 3.
B. 1 − log2 3.
C. 1 − log3 2.
D. 2 − log2 3.
Câu 116. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = 0.
B. x = −2.
C. x = −8.
D. x = −5.
Câu 117. Khối đa diện đều loại {3; 3} có số mặt
A. 4.
B. 5.
D. 3.
C. 2.
Câu 118. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp
√ là 1728. Khi đó, các kích thước của hình hộp là
√ đã cho
B. 8, 16, 32.
C. 2, 4, 8.
D. 6, 12, 24.
A. 2 3, 4 3, 38.
Câu 119. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0)
lần lượt là hình
! chiếu của B, C lên các !cạnh AC, AB. Tọa độ hình!chiếu của A lên BC là
8
7
5
A.
; 0; 0 .
B.
; 0; 0 .
C.
; 0; 0 .
D. (2; 0; 0).
3
3
3
√
Câu 120. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√ cho là
√
√
√
πa3 3
πa3 3
πa3 3
πa3 6
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
6
3
2
Câu 121. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 3.
B. 2.
C. 0.
D. 1.
log2 240 log2 15
Câu 122. [1-c] Giá trị biểu thức
−
+ log2 1 bằng
log3,75 2 log60 2
A. −8.
B. 4.
C. 3.
D. 1.
Câu 123. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 4).
B. (2; 4; 6).
C. (1; 3; 2).
D. (2; 4; 3).
Trang 9/10 Mã đề 1
√
√
Câu 124. Phần thực
và
phần
ảo
của
số
phức
z
=
2
−
1
−
3i lần lượt√l
√
√
√
A. Phần thực là √2, phần ảo là 1 − √
3.
B. Phần thực là 2 −√1, phần ảo là √
3.
C. Phần thực là 2 − 1, phần ảo là − 3.
D. Phần thực là 1 − 2, phần ảo là − 3.
1
Câu 125. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. − .
B. .
C. −3.
D. 3.
3
3
9x
Câu 126. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
C. 1.
D. −1.
A. 2.
B. .
2
Câu 127. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3.
Tính f (2) + f (4)?
A. 11.
B. 10.
C. 12.
D. 4.
π
Câu 128. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2
√
√
3 π6
1 π3
2 π4
e .
C. e .
D.
e .
A. 1.
B.
2
2
2
Câu 129. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 4.
B. ln 12.
C. ln 10.
D. ln 14.
Câu 130. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−1; 0).
B. (0; 1).
C. (−∞; 0) và (1; +∞). D. (−∞; −1) và (0; +∞).
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
C
3.
5.
D
B
7. A
9.
D
11.
C
13.
D
15.
2.
D
4.
D
6.
C
8.
C
10.
D
12.
D
14.
B
16. A
C
17. A
18. A
19. A
20. A
21.
D
22.
B
23.
D
24.
B
25.
D
26.
27.
B
28. A
C
30.
C
32.
C
31.
D
33.
D
34.
C
35. A
36.
C
37.
38.
C
39.
B
41.
B
40.
B
D
43.
42. A
44.
D
45.
C
C
46. A
47.
B
48. A
49.
B
B
50.
B
51.
52.
B
53.
54.
C
55.
56.
C
57.
58.
D
60.
62.
59.
C
D
B
C
61. A
C
B
63.
64.
C
65. A
66.
C
67.
69.
68. A
1
C
C
D
70.
72.
C
B
74. A
71.
B
73.
B
75.
C
76.
B
77.
D
78.
B
79.
D
80. A
81.
82.
D
83.
C
B
84.
C
85.
C
86.
C
87.
C
88.
C
89.
90.
D
91. A
92.
D
93.
94.
97.
C
B
D
B
108.
D
114.
116.
C
B
105.
B
107.
B
C
113.
D
115.
D
117. A
C
D
119. A
121.
C
122. A
123.
124.
C
125. A
126.
C
127.
128.
D
111.
118.
120.
C
109. A
B
112.
D
103.
C
104.
110.
B
101.
102.
106.
D
99.
98. A
100.
C
95.
B
96.
B
D
129.
130. A
2
C
B
C
D