Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg (264)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.48 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (−∞; 6, 5).
B. (4; 6, 5].
C. (4; +∞).
Câu 2. Dãy số nào sau đây có giới hạn là 0?
1 − 2n
n2 − 3n
.
B. un =
.
A. un =
2
n
5n + n2

C. un =

D. [6, 5; +∞).

n2 − 2
.
5n − 3n2



D. un =

n2 + n + 1
.
(n + 1)2

Câu 3. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≤ 3.
B. m ≥ 3.
C. −2 ≤ m ≤ 2.
D. −3 ≤ m ≤ 3.
Câu 4. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
!
! của A lên BC là
5
8
7
; 0; 0 .
B.
; 0; 0 .
C.
; 0; 0 .
D. (2; 0; 0).
A.
3
3
3

Câu 5. Khối lập phương thuộc loại
A. {4; 3}.
B. {3; 3}.

C. {3; 4}.

D. {5; 3}.

Câu 6. Khối đa diện đều loại {4; 3} có số đỉnh
A. 6.
B. 8.

C. 10.

D. 4.

Câu 7. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 6 mặt.
C. 9 mặt.

D. 7 mặt.

Câu 8. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 2ac
.
B.
.

C.
.
A.
c+3
c+2
c+2
2

D.

3b + 3ac
.
c+1

2

Câu 9. [3-c]
số f (x) = 2sin x + 2cos x lần√lượt là
√ Giá trị nhỏ nhất và giá trị lớn nhất của hàm √
A. 2 và 2 2.
B. 2 và 3.
C. 2 và 3.
D. 2 2 và 3.
x+2
đồng biến trên khoảng
Câu 10. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x + 5m
(−∞; −10)?
A. Vô số.
B. 2.

C. 3.
D. 1.
Câu 11. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n2 lần.
B. n3 lần.
C. n lần.
D. 3n3 lần.
Câu 12. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 4.
B. V = 3.
C. V = 6.
D. V = 5.
Câu 13. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
9
15
18
6
1 − 2n
Câu 14. [1] Tính lim

bằng?
3n + 1
2
1
2
A. − .
B. .
C. 1.
D. .
3
3
3
Câu 15. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.
C. Khối bát diện đều. D. Khối 20 mặt đều.
Trang 1/10 Mã đề 1


Câu 16. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 25 triệu đồng.
B. 2, 20 triệu đồng.
C. 2, 22 triệu đồng.
D. 3, 03 triệu đồng.
Câu 17. [4-1246d] Trong tất cả√các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất của |z|
C. 3.

D. 1.
A. 2.
B. 5.

2
Câu 18. [4-1228d] Cho phương trình (2 log3 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 62.
C. Vơ số.
D. 64.
2

Câu 19. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 2.
B. 5.
C. 4.
2n + 1
Câu 20. Tìm giới hạn lim
n+1
A. 2.
B. 0.
C. 1.

D. 3.

Câu 21. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −8.
B. x = −5.
C. x = −2.


D. x = 0.

D. 3.

Câu 22. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 16 m.
B. 12 m.
C. 8 m.
D. 24 m.
Câu 23. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 8 năm.
B. 10 năm.
C. 7 năm.
D. 9 năm.
Câu 24. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
B. m ≥ .
C. m ≤ .
D. m > .
A. m < .
4
4
4

4
Câu 25. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n3 lần.
B. n3 lần.
C. n3 lần.
D. 2n2 lần.
Câu 26. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −2.
B. −4.
C. 4.

D. 2.

Câu 27. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ
√ thức |z − 1 + 3i| = 3. Tìm
√ min |z − 1 − i|.
A. 1.
B. 2.
C. 2.
D. 10.

Câu 28. [1] Biết log6 a = 2 thì log6 a bằng
A. 108.
B. 36.
C. 4.
D. 6.
Câu 29. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lập phương.
B. Khối lăng trụ tam giác.

C. Khối bát diện đều.
D. Khối tứ diện.
Câu 30. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 6).
B. (2; 4; 3).
C. (2; 4; 4).
D. (1; 3; 2).

Câu 31. Thể tích của khối lập phương
√ có cạnh bằng a 2
3


2a 2
A. 2a3 2.
B.
.
C. V = 2a3 .
D. V = a3 2.
3
Trang 2/10 Mã đề 1


Câu 32. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
1
ab
ab

.
C. √
A. √
.
B. 2
.
D. √
.
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
Câu 33. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
D. .
A. 6.
B. 9.
C. .
2
2
0 0 0 0
Câu 34. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A B C D , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 1).
B. A0 (−3; −3; −3).
C. A0 (−3; −3; 3).
D. A0 (−3; 3; 3).

Câu 35. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 3, 5 triệu đồng.
B. 70, 128 triệu đồng. C. 20, 128 triệu đồng. D. 50, 7 triệu đồng.
d = 60◦ . Đường chéo
Câu 36. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0





a3 6
2a3 6
4a3 6
3
A. a 6.
B.
.
C.
.
D.
.
3
3
3
Câu 37. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 8.

C. 4.
D. 5.
2mx + 1
1
Câu 38. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. −5.
B. 1.
C. −2.
D. 0.
Câu 39. Biểu thức nào sau đây √
khơng có nghĩa
−3
−1
A. (−1) .
B.
−1.


C. (− 2)0 .

D. 0−1 .

Câu 40.! Dãy số nào sau đây có giới! hạn là 0?
n
n
4
5

A.
.
B. − .
e
3

!n
1
C.
.
3

!n
5
D.
.
3

Câu 41. Giá trị của lim (3x2 − 2x + 1)
x→1

B. 2.
C. +∞.
log2 240 log2 15
Câu 42. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. 4.
B. −8.

C. 1.
A. 3.

D. 1.

D. 3.

Câu 43. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x y z−1
x−2 y+2 z−3
A. = =
.
B.
=
=
.

1 1
1
2
2
2
x−2 y−2 z−3
x y−2 z−3
C.
=
=
.
D. =
=
.
2
3
4
2
3
−1
Câu 44. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; −8).
B. A(−4; −8)(.
C. A(−4; 8).
D. A(4; 8).
Câu 45. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
A.
.
B. 2.

C. 1.
2

D.

1
.
2
Trang 3/10 Mã đề 1


Câu 46. Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
A. Bát diện đều.
B. Nhị thập diện đều. C. Tứ diện đều.

D. Thập nhị diện đều.
3a
, hình chiếu vng
Câu 47. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a
2a
a 2
a
A. .
B.
.

C.
.
D. .
3
3
3
4

2
Câu 48.
√ Xác định phần ảo của số phức z = ( 2 + 3i)

A. 6 2.
B. −7.
C. −6 2.
D. 7.
2
ln x
m
Câu 49. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 24.
C. S = 22.
D. S = 135.
2
2

2
1 + 2 + ··· + n
Câu 50. [3-1133d] Tính lim
n3
1
2
A. .
B. .
C. 0.
D. +∞.
3
3
1
Câu 51. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 1) và (3; +∞). B. (−∞; 3).
C. (1; +∞).
D. (1; 3).
3
2
Câu 52. Giá√trị cực đại của hàm số y =
√ x − 3x − 3x + 2

A. −3 − 4 2.
B. −3 + 4 2.
C. 3 + 4 2.


D. 3 − 4 2.


Câu 53. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −7.
B. −2.
C.
.
D. −4.
27
Câu 54. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm mặt.
B. Ba mặt.
C. Hai mặt.
D. Bốn mặt.
x
9
Câu 55. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. 1.
B. 2.
C. .
D. −1.
2
Câu 56. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba cạnh.
B. Hai cạnh.
C. Năm cạnh.
D. Bốn cạnh.
tan x + m

nghịch biến trên khoảng
Câu 57. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
m tan x + 1
 π
0; .
4
A. (−∞; −1) ∪ (1; +∞). B. [0; +∞).
C. (−∞; 0] ∪ (1; +∞). D. (1; +∞).
Câu 58. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (1; +∞).
C. (−1; 1).

D. (−∞; −1).

Câu 59. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 5 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 6 cạnh, 6 mặt.
Câu 60. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Một tứ diện đều và bốn hình chóp tam giác đều.
B. Bốn tứ diện đều và một hình chóp tam giác đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.
D. Năm tứ diện đều.
Trang 4/10 Mã đề 1


Câu 61. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp
√ là√
D. 6, 12, 24.

A. 2, 4, 8.
B. 8, 16, 32.
C. 2 3, 4 3, 38.
Câu 62. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể tích khối chóp S .ABC là √


a3 3
a3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
4
4
12
8
Câu 63. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. f (x) có giới hạn hữu hạn khi x → a.
B. lim+ f (x) = lim− f (x) = +∞.
C. lim+ f (x) = lim− f (x) = a.
x→a


x→a

x→a

x→a

D. lim f (x) = f (a).
x→a

[ = 60◦ , S O
Câu 64. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S BC) bằng


2a 57
a 57
a 57
A.
.
B.
.
C. a 57.
D.
.
19
19
17
Câu 65. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?

A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số đồng biến trên khoảng (1; 2).
C. Hàm số nghịch biến trên khoảng (−∞; 0).
D. Hàm số nghịch biến trên khoảng (1; +∞).
9t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9t + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. Vô số.
B. 1.
C. 2.
D. 0.

Câu 66. [4] Xét hàm số f (t) =

Câu 67. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a
B. a.
C. .
D.
.
A. .
3
2
2




x = 1 + 3t




Câu 68. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là











x = −1 + 2t
x = −1 + 2t

x = 1 + 3t
x = 1 + 7t
















A. 
D. 
.
y = −10 + 11t . B. 
y = −10 + 11t . C. 
y = 1 + 4t .
y=1+t

















z = 6 − 5t
z = −6 − 5t
z = 1 − 5t
z = 1 + 5t
un
Câu 69. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 0.
B. 1.
C. +∞.
D. −∞.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 70. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là



a3 2

a3 3
a3 3
2
.
B.
.
C. 2a 2.
D.
.
A.
24
24
12
!
5 − 12x
Câu 71. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 2.
B. Vô nghiệm.
C. 3.
D. 1.
Câu 72. Khối đa diện đều loại {3; 5} có số mặt
A. 30.
B. 8.

C. 20.

D. 12.
Trang 5/10 Mã đề 1



Câu 73. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; +∞).
B. Hàm số nghịch biến trên khoảng (−∞; 2).
C. Hàm số đồng biến trên khoảng (0; 2).
D. Hàm số nghịch biến trên khoảng (0; 2).
Câu 74. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
B.
.
C.
.
D. a3 .
A.
24
12
6
Câu 75. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 76. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 7.

B. 1.
C. 3.
D. 2.
x+3
Câu 77. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. Vô số.
B. 3.
C. 1.
D. 2.
Câu 78. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 4.

B. 1.

C. 3.

D. 2.

Câu 79. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị nhỏ nhất của biểu thức P = x + 2y thuộc tập nào dưới
!
"
!

" đây?
5
5
A. (1; 2).
B. [3; 4).
C. 2; .
D.
;3 .
2
2
Câu 80. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m ≥ 0.
B. m > −1.
C. m > 1.

D. m > 0.

Câu 81. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 2.
B. 0.
C. 1.

D. 3.


ab.

Câu 82. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|





12 17
A. 68.
B. 5.
C.
.
D. 34.
17
Câu 83. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 3
a3 5
a3 5
a3 5
A.
.
B.
.
C.
.
D.
.
12
6
4
12
Câu 84. Khối đa diện loại {5; 3} có tên gọi là gì?

A. Khối tứ diện đều.
B. Khối 20 mặt đều.

C. Khối bát diện đều.

D. Khối 12 mặt đều.
Trang 6/10 Mã đề 1


Câu 85. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.424.000.
C. 102.423.000.
D. 102.016.000.
Câu 86. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 5.
B. −6.
C. 6.
2

D. −5.

Câu 87. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 6.
B. 8.
C. 3.

D. 4.
log 2x

Câu 88. [3-1229d] Đạo hàm của hàm số y =
x2
1 − 2 log 2x
1
1 − 2 ln 2x
1 − 4 ln 2x
A. y0 =
.
B. y0 = 3
.
C. y0 = 3
.
D. y0 =
.
3
x
2x ln 10
x ln 10
2x3 ln 10
Câu 89. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6

a3 6
a3 3
a 6
.
B.
.
C.
.
D.
.
A.
24
8
48
24
Câu 90. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim+ f (x) = f (b).
B. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim− f (x) = f (a) và lim− f (x) = f (b).
D. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a
x→a
x→b
x→b


Câu 91. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là

3

a 3
a3
a3 3
A.
.
B.
.
C.
.
D. a3 3.
3
4
12
Câu 92. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều đúng.
B. Chỉ có (II) đúng.

C. Chỉ có (I) đúng.

D. Cả hai đều sai.


Câu 93. [1] Đạo hàm của làm số y = log x là
ln 10
1
1
1
A. y0 =
.
B. y0 = .
C.
.
D. y0 =
.
x
x
10 ln x
x ln 10
Câu 94. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 27cm3 .
B. 64cm3 .
C. 46cm3 .
D. 72cm3 .
Câu 95. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m ≤ 3.
C. m < 3.
D. m ≥ 3.
Câu 96. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; 0) và (1; +∞). B. (−1; 0).

C. (0; 1).
D. (−∞; −1) và (0; +∞).
Câu 97. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối lập phương.

C. Khối tứ diện đều.

D. Khối 12 mặt đều.
Trang 7/10 Mã đề 1


Câu 98. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d ⊥ P.
B. d nằm trên P.
C. d song song với (P).
D. d nằm trên P hoặc d ⊥ P.
 π
x
Câu 99. [2-c] Giá trị lớn nhất của hàm số y = e cos x trên đoạn 0; là
2


2 π4
3 π6
1 π
A.
e .
e .
B.
C. 1.

D. e 3 .
2
2
2
Câu 100. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa
√ hai đường thẳng BD và S C bằng



a 6
a 6
a 6
A.
.
B. a 6.
C.
.
D.
.
2
3
6
Câu 101. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 6 mặt.
C. 8 mặt.
D. 10 mặt.
1


Câu 102. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R \ {1}.
B. D = (−∞; 1).
C. D = R.

D. D = (1; +∞).

x2

Câu 103. [2] Tổng các nghiệm của phương trình 3 x−1 .2 = 8.4 x−2 là
A. 2 − log2 3.
B. 1 − log2 3.
C. 1 − log3 2.

D. 3 − log2 3.

7n − 2n + 1
3n3 + 2n2 + 1
7
2
C. .
D. 0.
A. 1.
B. - .
3
3
Câu 105. Tính thể tích khối lập phương biết tổng diện tích√tất cả các mặt bằng 18.
A. 9.
B. 8.
C. 3 3.

D. 27.



x=t




Câu 106. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
A. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
B. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
9
9
2
2
2
2

2
2
C. (x − 3) + (y − 1) + (z − 3) = .
D. (x + 3) + (y + 1) + (z − 3) = .
4
4
4x + 1
Câu 107. [1] Tính lim
bằng?
x→−∞ x + 1
A. −4.
B. 4.
C. −1.
D. 2.
x−2
Câu 108. Tính lim
x→+∞ x + 3
2
A. 2.
B. − .
C. 1.
D. −3.
3
Câu 109. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun √
z.



5 13

A.
.
B. 26.
C. 2 13.
D. 2.
13
Câu 110. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối bát diện đều. B. Khối lập phương.
C. Khối 12 mặt đều.
D. Khối tứ diện đều.
2

3

Câu 104. Tính lim

x2
Câu 111. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = .
B. M = e, m = 1.
C. M = e, m = 0.
D. M = , m = 0.
e
e
Trang 8/10 Mã đề 1



Câu 112. Cho hình chóp S .ABCD có√đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
S .ABCD là
của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp √
2a3
2a3 3
4a3 3
4a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 113. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. Vô nghiệm.
C. 2.
D. 3.
Câu 114. Bát diện đều thuộc loại
A. {3; 4}.
B. {4; 3}.

C. {5; 3}.


Câu 115. Phát biểu nào sau đây là sai?
1
A. lim k = 0 với k > 1.
n
C. lim un = c (Với un = c là hằng số).
!
1
1
1
Câu 116. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
A. 1.

B. 2.

D. {3; 3}.

1
B. lim √ = 0.
n
n
D. lim q = 1 với |q| > 1.

C. 0.

Câu 117. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = [2; 1].

B. D = R.
C. D = (−2; 1).

D.

3
.
2

2

D. D = R \ {1; 2}.

d = 30◦ , biết S BC là tam giác đều
Câu 118. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.

.
26
13
9
16
2−n
Câu 119. Giá trị của giới hạn lim
bằng
n+1
A. 2.
B. 0.
C. 1.
D. −1.
Câu 120. Tứ diện đều thuộc loại
A. {3; 3}.
B. {5; 3}.

C. {4; 3}.

D. {3; 4}.

[ = 60◦ , S O
Câu 121. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.√Khoảng cách từ O đến (S BC) bằng


a 57
2a 57
a 57

A.
.
B.
.
C. a 57.
D.
.
19
19
17
Câu 122. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tam giác.
B. Một khối chóp tam giác, một khối chóp tứ giác.
C. Hai khối chóp tứ giác.
D. Một khối chóp tam giác, một khối chóp ngữ giác.
Câu 123. ZCho hai hàmZy = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
f (x)dx =

A. Nếu
Z

g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
C. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z

0
D. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
B. Nếu

f (x)dx =

g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z

Câu 124. Hàm số y =
A. x = 1.

x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 2.

C. x = 3.

D. x = 0.
Trang 9/10 Mã đề 1


Câu 125. Hàm số nào sau đây khơng có cực trị
A. y = x4 − 2x + 1.
B. y = x3 − 3x.



4n2 + 1 − n + 2
Câu 126. Tính lim
bằng
2n − 3
A. +∞.
B. 2.

C. y =

x−2
.
2x + 1

1
D. y = x + .
x

3
.
2
Câu 127. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
B. m ≤ 0.
C. m ≥ 0.
D. m > − .
A. − < m < 0.
4
4

0 0 0 0
Câu 128. [3] Cho hình lập phương ABCD.A B C D có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
0 0
(AB0C) và


√ (A C D) bằng

a 3
a 3
2a 3
.
B.
.
C.
.
D. a 3.
A.
2
3
2
Câu 129. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
9
2
1
1
A.
.
B. .

C.
.
D. .
10
5
10
5
0 0 0
Câu 130. Cho lăng trụ đều ABC.A B C có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


a3
a3 3
a3 3
3
.
C.
.
D.
.
A. a .
B.
2
3
6
C. 1.

D.


- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B

2.

3.

D

4.

5. A
C

7.

D

9.
11.


B

C

6.

B

8.

B

10.

B

12. A
D

15.

14. A
16.
18.

B

C

17. A


B

20. A

21. A

22. A

23.

24.

C

19.

C

25.

26. A

D
B

27. A

28.


29.

C

30. A

D

31. A

32.

D

33.

C

34.

D

35.

C

36. A

37. A
D


38.
40.
42.

D

39.

C

41.

B

B

43. A

44.

D

45.

B

46.

D


47.

B

48. A

49. A

50. A

51. A

52.

B

53.

54.

B

55. A
57.

56. A
58.

C


59.

60. A
62.

D

64. A
66.

B
D
B

61.

D

63.

D

65. A
67.

C

68. A


69. A
1

B


71.

70. A
72.
74.

C
B

76.

D

80.

C

75.

C

81.

84.


D

85.

86.

D

87.

C

90.
92.

D

95.

D

D

100.

D

101.


102.

D

103. A

B

99. A

104.

B

105.

106.

B

107.
C

B
C
B

109. A

110. A

D

111.

C

113.

C

114. A

115.

116. A

117.

D
B

119.

B

120. A
122.

C


D

98.

118.

B

93.
97.

B

112.

D

91. A

B

108.

B

89. A

94. A
96.


D

83.

C

88.

B

79.

B

82.

73.
77.

C

78.

D

D

121. A
B


123.

124. A

125.

126.

127.

C

128.

B

130.

B

129. A

2

B
C
D




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×