TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều.
C. Khối lập phương.
D. Khối 12 mặt đều.
Câu 2. Phát biểu nào sau đây là sai?
1
= 0.
nk
D. lim qn = 0 (|q| > 1).
A. lim un = c (un = c là hằng số).
1
C. lim = 0.
n
B. lim
Câu 3. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có một.
B. Có hai.
C. Có vơ số.
D. Khơng có.
Câu 4. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng
√
√
√
√
a 2
a 2
.
D.
.
A. a 2.
B. a 3.
C.
3
2
√
Câu 5. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 1 nghiệm.
B. 2 nghiệm.
C. Vô nghiệm.
D. 3 nghiệm.
d = 30◦ , biết S BC là tam giác đều
Câu 6. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
16
26
9
13
2
Câu 7. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 2 − log2 3.
B. 3 − log2 3.
C. 1 − log2 3.
D. 1 − log3 2.
Câu 8. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy
(ABC) một
góc bằng 60◦ . Thể tích√khối chóp S .ABC là
√
√
a3 3
a3
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
8
12
4
4
Câu 9. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 0) và (2; +∞). B. (0; 2).
C. (0; +∞).
D. (−∞; 2).
Câu 10. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 1200 cm2 .
C. 120 cm2 .
D. 160 cm2 .
2
Câu 11. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
2
1
A. 3 .
B. 3 .
C. 2 .
2e
e
e
Câu 12. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 5.
C. 4.
D.
1
√ .
2 e
D. 8.
Câu 13. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
a 5. Thể tích khối chóp S .ABCD là
√ S H ⊥ (ABCD), S A =
√
3
3
4a 3
4a
2a3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Trang 1/10 Mã đề 1
Câu 14. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 5.
B. 3.
C. 2.
D. 1.
Câu 15. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 1587 m.
B. 387 m.
C. 25 m.
D. 27 m.
Câu 16. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1079
23
1637
1728
A.
.
B.
.
C.
.
D.
.
4913
68
4913
4913
Câu 17. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
B. m ≥ 0.
C. m ≤ 0.
D. m > − .
A. − < m < 0.
4
4
1
Câu 18. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3
√
một đoạn có độ dài bằng 24.
A. m = 4.
B. m = −3.
C. m = −3, m = 4.
D. −3 ≤ m ≤ 4.
Câu 19. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là
√
√
a3 3
a3
a3 3
3
A. a .
B.
.
C.
.
D.
.
6
3
2
Câu 20. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
B. aαβ = (aα )β .
C. aα bα = (ab)α .
D. aα+β = aα .aβ .
A. β = a β .
a
Câu 21. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m > 3.
C. m ≤ 3.
D. m < 3.
Câu 22. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 91cm3 .
B. 84cm3 .
C. 48cm3 .
D. 64cm3 .
0 0 0 0
0
Câu 23.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 6
a 3
A.
.
B.
.
C.
.
D.
.
7
2
3
2
√
Câu 24. [1] Biết log6 a = 2 thì log6 a bằng
A. 4.
B. 6.
C. 108.
D. 36.
Câu 25. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A.
.
B. −4.
C. −7.
D. −2.
27
Câu 26. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 10 năm.
C. 14 năm.
D. 11 năm.
1
Câu 27. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R \ {1}.
B. D = (1; +∞).
C. D = R.
D. D = (−∞; 1).
Trang 2/10 Mã đề 1
Câu 28. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
100.(1, 01)3
(1, 01)3
triệu.
B. m =
triệu.
A. m =
(1, 01)3 − 1
3
100.1, 03
120.(1, 12)3
triệu.
D. m =
triệu.
C. m =
3
(1, 12) − 1
3
Câu 29. Hàm số nào sau đây khơng có cực trị
x−2
A. y =
.
B. y = x3 − 3x.
2x + 1
C. y = x4 − 2x + 1.
1
D. y = x + .
x
Câu 30. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
ab
1
1
.
B. √
.
C. 2
.
A. √
.
D. √
2
a +b
2 a2 + b2
a2 + b2
a2 + b2
Câu 31. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 32. Khối đa diện đều loại {5; 3} có số mặt
A. 20.
B. 12.
C. 30.
D. 8.
Câu 33. Khối đa diện đều loại {3; 4} có số cạnh
A. 12.
B. 10.
C. 8.
D. 6.
Câu 34. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là
√ hình chóp S .ABCD với mặt
√
2
2
2
a 7
a 5
11a
a2 2
A.
.
B.
.
C.
.
D.
.
8
16
32
4
x3 − 1
Câu 35. Tính lim
x→1 x − 1
A. 0.
B. 3.
C. +∞.
D. −∞.
Câu 36. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −21.
B. P = −10.
C. P = 10.
D. P = 21.
√
Câu 37.
phức z = ( 2 + 3i)2
√ Xác định phần ảo của số √
A. 6 2.
B. −6 2.
C. −7.
D. 7.
√
√
Câu 38. Tìm giá trị lớn nhất của√hàm số y = x + 3 + 6√− x
√
A. 3.
B. 2 3.
C. 3 2.
D. 2 + 3.
Câu 39. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = 3S h.
B. V = S h.
C. V = S h.
3
2
D. V = S h.
Câu 40. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 4}.
B. {5; 3}.
C. {3; 5}.
D. {4; 3}.
Câu 41. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −4.
B. 2.
C. 4.
D. −2.
Trang 3/10 Mã đề 1
Câu 42. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C) và (A0C 0 D) bằng
√
√
√
√
2a 3
a 3
a 3
B.
.
C.
.
D.
.
A. a 3.
2
2
3
Câu 43. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√
√ chóp S .ABCD là
√
a3 2
a3 3
a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
16
24
48
48
√
Câu 44. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là
√
√
a3 3
a3 3
a3
3
A.
C.
.
B. a 3.
.
D.
.
3
12
4
Câu 45. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 1.
B. 3.
C. 0.
D. 2.
1
Câu 46. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 2.
B. 3.
C. 1.
D. 4.
Câu 47. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
=
=
và d0 :
=
=
đường thẳng d :
2
3
−5
3
−2
−1
x−2 y−2 z−3
x y−2 z−3
A.
=
=
.
B. =
=
.
2
3
4
2
3
−1
x−2 y+2 z−3
x y z−1
.
D.
=
=
.
C. = =
1 1
1
2
2
2
√
Câu 48. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng
√
√
√
3a
a 38
3a 38
3a 58
.
B.
.
C.
.
D.
.
A.
29
29
29
29
√
Câu 49. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
√
1
B. 5.
C. 5.
A. .
D. 25.
5
Câu 50. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm tứ diện đều.
B. Một tứ diện đều và bốn hình chóp tam giác đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.
D. Bốn tứ diện đều và một hình chóp tam giác đều.
√
Câu 51. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị ngun dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vô số.
B. 63.
C. 62.
D. 64.
1
Câu 52. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = e + 1.
B. xy = −e + 1.
C. xy0 = ey − 1.
D. xy0 = −ey − 1.
Câu 53. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là√
2a3 3
a3
4a3 3
a3
A.
.
B.
.
C.
.
D.
.
3
6
3
3
Trang 4/10 Mã đề 1
Câu 54. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −6.
B. 0.
C. 3.
D. −3.
√
√
4n2 + 1 − n + 2
bằng
Câu 55. Tính lim
2n − 3
3
A. .
B. +∞.
C. 1.
D. 2.
2
x2 − 12x + 35
Câu 56. Tính lim
x→5
25 − 5x
2
2
D. .
A. +∞.
B. −∞.
C. − .
5
5
1
Câu 57. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e − 1.
B. xy = e − 1.
C. xy0 = ey + 1.
D. xy0 = −ey + 1.
Câu 58.
√ [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
B. 2.
C. 1.
D. 2.
A. 10.
x−2
Câu 59. Tính lim
x→+∞ x + 3
2
A. 1.
B. −3.
C. 2.
D. − .
3
2
Câu 60. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 22016 .
B. e2016 .
C. 1.
D. 0.
√
Câu 61. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√
√ cho là
√
√
πa3 3
πa3 3
πa3 3
πa3 6
A. V =
.
B. V =
.
C. V =
.
D. V =
.
3
2
6
6
Câu 62. Trong các khẳng định sau, khẳng định nào sai?
A. Cả ba đáp án trên.
B. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
√
D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
Câu 63. Khối đa diện đều loại {4; 3} có số cạnh
A. 30.
B. 20.
C. 10.
Câu 64. Giá√trị cực đại của hàm số y√= x3 − 3x2 − 3x + 2
√
A. −3 − 4 2.
B. 3 + 4 2.
C. 3 − 4 2.
D. 12.
√
D. −3 + 4 2.
Câu 65. Cho số phức z thỏa mãn |z +
√ 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
√
A. |z| = 17.
B. |z| = 17.
C. |z| = 10.
D. |z| = 10.
Câu 66. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun √
z.
√
√
√
5 13
A.
C. 2 13.
D. 2.
.
B. 26.
13
x=t
Câu 67. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
y = −1 và hai mặt phẳng (P), (Q)
z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
Trang 5/10 Mã đề 1
9
A. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
B. (x − 3)2 + (y + 1)2 + (z + 3)2 =
4
9
2
2
2
C. (x + 3) + (y + 1) + (z + 3) = .
D. (x + 3)2 + (y + 1)2 + (z − 3)2 =
4
Câu 68. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. −7, 2.
B. 0, 8.
C. 72.
D. 7, 2.
Câu 69.
có nghĩa
√ Biểu thức nào sau đây không
−3
−1
A.
−1.
B. 0 .
√
C. (− 2)0 .
Câu 70. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −7.
B. −3.
C. −5.
9
.
4
9
.
4
D. (−1)−1 .
D. Không tồn tại.
Câu 71. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −e2 .
B. 2e4 .
C. 2e2 .
D. −2e2 .
Câu 72. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. 2.
C. Vô nghiệm.
Câu 73. Hàm số y =
A. x = 0.
x − 3x + 3
đạt cực đại tại
x−2
B. x = 1.
D. 1.
2
C. x = 3.
D. x = 2.
Câu 74. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của√|z + 2 + i|
√
√
√
12 17
.
B. 34.
C. 68.
D. 5.
A.
17
√
Câu 75. Thể tích của khối lập phương có cạnh bằng a 2
√
√
√
2a3 2
3
3
3
B. 2a 2.
C. V = 2a .
D.
.
A. V = a 2.
3
Câu 76. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 77. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD là
√
a3
a3 3
a3 3
3
.
C.
.
D.
.
A. a .
B.
9
3
3
Z 1
Câu 78. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0
1
.
4
Câu 79. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 8.
A. 1.
B.
1
.
2
C. 0.
D.
C. 6.
D. 4.
Câu 80. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích khối
√ chóp S .ABCD là 3 √
3
3
√
a 3
2a 3
a 3
A.
.
B.
.
C.
.
D. a3 3.
3
3
6
0 0 0
Câu 81. [4-1214h] Cho khối lăng trụ ABC.A B C , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng
√
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3
√
√
2 3
A. 1.
B. 2.
C. 3.
D.
.
3
Trang 6/10 Mã đề 1
Câu 82. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 24.
B. 23.
C. 22.
D. 21.
Câu 83. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp là
√
√
A. 2, 4, 8.
B. 8, 16, 32.
C. 6, 12, 24.
D. 2 3, 4 3, 38.
Câu 84. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ là
√
√
√ Thể tích khối chóp S 3.ABC
3
a 2
a3 3
a3 3
a 3
.
B.
.
C.
.
D.
.
A.
4
12
6
12
q
2
Câu 85. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [0; 4].
C. m ∈ [0; 1].
D. m ∈ [−1; 0].
!
1
1
1
Câu 86. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
A. .
B. 2.
C. +∞.
D. .
2
2
Câu 87. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối 12 mặt đều.
C. Khối bát diện đều. D. Khối tứ diện đều.
Câu 88. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 1.
B. +∞.
Câu 89. Khối đa diện đều loại {3; 5} có số mặt
A. 20.
B. 8.
log 2x
Câu 90. [3-1229d] Đạo hàm của hàm số y =
x2
1
1
−
2
ln
2x
.
B. y0 = 3
.
A. y0 = 3
x ln 10
2x ln 10
Câu 91. Phát biểu nào sau đây là sai?
1
A. lim √ = 0.
n
C. lim un = c (Với un = c là hằng số).
C. 0.
D. 2.
C. 30.
D. 12.
là
C. y0 =
1 − 2 log 2x
.
x3
D. y0 =
1 − 4 ln 2x
.
2x3 ln 10
1
= 0 với k > 1.
nk
D. lim qn = 1 với |q| > 1.
B. lim
Câu 92. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 216 triệu.
B. 220 triệu.
C. 210 triệu.
D. 212 triệu.
Câu 93. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Chỉ có (I) đúng.
C. Cả hai đều sai.
D. Cả hai đều đúng.
Trang 7/10 Mã đề 1
Câu 94. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
√
√
√
√
a 6
.
A. a 3.
B. 2a 6.
C. a 6.
D.
2
1 + 2 + ··· + n
Câu 95. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
A. lim un = 0.
B. Dãy số un khơng có giới hạn khi n → +∞.
1
C. lim un = 1.
D. lim un = .
2
Câu 96. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
8a
a
2a
5a
A.
.
B. .
C.
.
D.
.
9
9
9
9
Câu 97. Khối đa diện đều loại {3; 4} có số mặt
A. 6.
B. 10.
!4x
!2−x
2
3
Câu 98. Tập các số x thỏa mãn
≤
là
3 # 2
#
2
2
A. −∞; .
B. −∞; .
3
5
C. 8.
"
!
2
C.
; +∞ .
5
Câu 99. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. −1.
B. 2.
C. 1.
D. 12.
"
!
2
D. − ; +∞ .
3
D. 6.
Câu 100. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng là hình lăng trụ đều.
B. Hình lăng trụ tứ giác đều là hình lập phương.
C. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
Câu 101. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 8 mặt.
C. 6 mặt.
Câu 102. [1-c] Giá trị của biểu thức
A. −4.
log7 16
log7 15 − log7
B. 2.
15
30
D. 10 mặt.
bằng
C. 4.
D. −2.
Câu 103. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc
60◦ . Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n.
Thể tích khối
√ chóp S .ABMN là 3 √
√
√
3
2a 3
5a 3
a3 3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
3
2
3
Câu 104. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
A. 2e + 1.
B. 2e.
Câu 105. Khối đa diện đều loại {3; 3} có số mặt
A. 3.
B. 4.
2
.
e
C. 3.
D.
C. 2.
D. 5.
Câu 106. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
9
13
23
5
A.
.
B.
.
C. −
.
D. − .
25
100
100
16
Trang 8/10 Mã đề 1
3
2
x
Câu 107. [2]
√ của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng 2
√ Tìm m để giá trị nhỏ nhất
B. m = ± 2.
C. m = ±3.
D. m = ±1.
A. m = ± 3.
Câu 108. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng
(cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 15 tháng.
B. 16 tháng.
C. 17 tháng.
D. 18 tháng.
Câu 109. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [−1; 2).
B. [1; 2].
C. (1; 2).
D. (−∞; +∞).
2
2
Câu 110. [3-c] Giá trị nhỏ nhất√và giá trị lớn nhất của hàm số √
f (x) = 2sin x + 2cos x √
lần lượt là
A. 2 và 3.
B. 2 và 3.
C. 2 và 2 2.
D. 2 2 và 3.
Câu 111. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−1; 0).
B. (0; 1).
C. (−∞; 0) và (1; +∞). D. (−∞; −1) và (0; +∞).
Câu 112. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 − 2e
1 + 2e
.
B. m =
.
C. m =
.
A. m =
4e + 2
4 − 2e
4 − 2e
D. m =
1 − 2e
.
4e + 2
Câu 113. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4
√
√
√
√
a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
6
24
36
Câu 114. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 5 mặt.
B. 6 mặt.
C. 4 mặt.
D. 3 mặt.
Câu 115. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.
D. Khối bát diện đều.
C. Khối 20 mặt đều.
Câu 116. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích
hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.
B. 0, 2.
C. 0, 4.
D. 0, 5.
Câu 117. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 3.
B. 1.
C. 2.
D. Vô số.
Câu 118. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Khơng thay đổi.
B. Tăng lên (n − 1) lần. C. Giảm đi n lần.
D. Tăng lên n lần.
Câu 119. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
C. T = e + 1.
D. T = e + .
A. T = e + 3.
B. T = 4 + .
e
e
π π
Câu 120. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 7.
B. 3.
C. 1.
D. −1.
Câu 121. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối lập phương.
C. Khối 12 mặt đều.
D. Khối bát diện đều.
Trang 9/10 Mã đề 1
Câu 122. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = 2.
C. y(−2) = −18.
D. y(−2) = 6.
Câu 123. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 3 mặt.
D. 9 mặt.
Câu 124. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d song song với (P).
B. d nằm trên P.
C. d nằm trên P hoặc d ⊥ P.
D. d ⊥ P.
d = 300 .
Câu 125. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
0
Độ dài cạnh bên
√ khối lăng trụ đã cho.
√ CC = 3a. Thể tích V 3của
√
3a 3
a3 3
.
B. V =
.
C. V = 6a3 .
D. V = 3a3 3.
A. V =
2
2
Câu 126. Khối đa diện đều loại {3; 4} có số đỉnh
A. 8.
B. 4.
C. 6.
D. 10.
Câu 127. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. 5.
B. .
C.
.
D. 7.
2
2
Câu 128. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
A. 1.
B. 2.
C.
.
D. .
2
2
9x
Câu 129. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. .
B. −1.
C. 1.
D. 2.
2
Câu 130. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3.
Tính f (2) + f (4)?
A. 12.
B. 11.
C. 10.
D. 4.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
C
2.
D
3.
B
4.
D
5.
B
6.
D
7. A
8. A
C
11.
13.
D
10.
9. A
12. A
B
14.
C
15.
D
16.
C
17.
D
18.
C
19.
D
20. A
22.
21. A
23.
C
25.
27.
D
24. A
26.
D
B
D
28. A
29. A
30.
B
31. A
32.
B
33. A
34. A
35.
B
36. A
37. A
39.
B
38.
C
40.
C
41.
D
42.
43.
D
44. A
45.
C
46.
47.
C
48. A
49.
D
50.
D
C
B
51.
C
52.
53.
C
54.
D
55.
C
56.
D
57.
B
58.
C
C
59. A
60.
D
61. A
62.
D
D
63.
D
64.
65.
D
66. A
67.
B
68. A
1
69.
B
71. A
70.
D
72.
D
73.
B
74. A
75.
B
76.
78.
C
77.
79.
B
80. A
81.
B
82.
83.
87.
D
C
84.
C
D
85.
B
86.
B
D
B
C
88.
89. A
90. A
D
91.
D
92.
93. A
C
94.
95.
D
97.
96. A
C
99.
D
98.
D
100.
D
101.
C
102. A
103.
C
104.
C
106.
C
105.
B
107.
D
108.
109.
D
110.
D
111. A
112.
D
113. A
114.
B
C
115.
C
116. A
117.
C
118.
C
120.
C
122.
C
119. A
121.
D
124.
C
125.
B
126.
C
127.
B
128.
B
129.
130. A
2
C