Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg (772)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.4 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (II).

B. Cả ba mệnh đề.

C. (I) và (III).

D. (II) và (III).

Câu 2.
các khẳng định sau, khẳng định nào sai?
Z Trong
u0 (x)
dx = log |u(x)| + C.
A.
u(x)
B. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.


C. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
D. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
1
Câu 3. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m−2 có nghiệm duy nhất?
3
A. 1.
B. 2.
C. 3.
D. 4.
Câu 4. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
1
ab
1
.
B. 2
.
D. √
.
A. √
.
C. √
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
1

Câu 5. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 < m < −1.
B. −2 ≤ m ≤ −1.
C. (−∞; −2) ∪ (−1; +∞). D. (−∞; −2] ∪ [−1; +∞).
Câu 6. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp 4 lần.
C. Tăng gấp 6 lần.
D. Tăng gấp đơi.
Câu 7. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là√

a3
a3
4a3 3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
6
3

3
3
2
x
Câu 8. [2] Tìm
√ m để giá trị lớn nhất của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng 8 √
A. m = ± 2.
B. m = ±3.
C. m = ±1.
D. m = ± 3.
1
Câu 9. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.
A. −3 ≤ m ≤ 4.
B. m = 4.
C. m = −3, m = 4.
D. m = −3.
Câu 10. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = −10.
C. P = −21.
D. P = 21.
Trang 1/10 Mã đề 1


Câu 11. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 5 mặt.
B. 6 mặt.

C. 3 mặt.
D. 4 mặt.
mx − 4
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 12. Tìm m để hàm số y =
x+m
A. 26.
B. 34.
C. 45.
D. 67.
q
2
Câu 13. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [−1; 0].
C. m ∈ [0; 1].
D. m ∈ [0; 2].
Câu 14. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim f (x) = f (a).
B. f (x) có giới hạn hữu hạn khi x → a.
x→a

C. lim+ f (x) = lim− f (x) = +∞.
x→a

x→a


D. lim+ f (x) = lim− f (x) = a.
x→a

x→a

Câu 15. Tính thể tích khối lập phương
biết tổng diện tích tất cả các mặt bằng 18.

C. 27.
D. 8.
A. 9.
B. 3 3.

π
Câu 16. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √
thức T = a + b 3.

A. T = 3 3 + 1.
B. T = 2.
C. T = 4.
D. T = 2 3.
2
Câu 17. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2√
A. m = ±1.
B. m = ±3.
C. m = ± 3.

D. m = ± 2.
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử
Câu 18. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
của S bằng
A. 5.
B. 3.
C. 2.
D. 4.

Câu 19. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối bát diện đều.

C. Khối 12 mặt đều.

D. Khối tứ diện đều.

Câu 20. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
B. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
!vn
un
C. Nếu lim un = a > 0 và lim vn = 0 thì lim

= +∞.
vn
!
un
D. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
Câu 21. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác S AB đều và nằm trong mặt
Thể tích khối chóp
√ S .ABCD là
√ phẳng vng góc với 3(ABCD).

3
3

a 3
a 3
a 2
A. a3 3.
B.
.
C.
.
D.
.
2
4
2
Câu 22. Thể tích của khối lăng√trụ tam giác đều có cạnh √

bằng 1 là:

3
3
3
3
A. .
B.
.
C.
.
D.
.
4
2
4
12

Câu 23. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 2 nghiệm.
B. 3 nghiệm.
C. 1 nghiệm.
D. Vô nghiệm.
Câu 24. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 2 nghiệm.
B. 3 nghiệm.
C. Vơ nghiệm.

D. 1 nghiệm.
Trang 2/10 Mã đề 1



Câu 25. Tính lim

x→+∞

x+1
bằng
4x + 3
B. 1.

1
.
3
Câu 26. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
A. 3.

C.

D.

1
.
4

2
.
e
Câu 27. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1

1
1
1
A. m ≤ .
B. m > .
C. m < .
D. m ≥ .
4
4
4
4

Câu 28. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là √

a3 3
a3 3
a3
.
B.
.
C. a3 3.
.
A.
D.
3
12
4
d = 90◦ , ABC

d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 29. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là



a3 3
a3 2
a3 3
A.
.
B.
.
C.
.
D. 2a2 2.
12
24
24
Câu 30. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = S h.
C. V = 3S h.
D. V = S h.
3
2
1
Câu 31. [1] Giá trị của biểu thức log √3

bằng
10
1
1
A. −3.
B. 3.
C. .
D. − .
3
3
1
Câu 32. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = e + 1.
B. xy = e − 1.
C. xy0 = −ey − 1.
D. xy0 = −ey + 1.
A. 2e + 1.

B. 3.

C. 2e.

D.


Câu 33. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 4 mặt.
C. 6 mặt.

D. 10 mặt.

Câu 34. Hàm số y = −x + 3x − 1 đồng biến trên khoảng nào dưới đây?
A. (0; 2).
B. (−∞; 1).
C. R.

D. (2; +∞).

3

2





Câu 35. [12215d] Tìm m để phương trình 4 x+
− 4.2 x+
− 3m + 4 = 0 có nghiệm
3
3
9
A. m ≥ 0.
B. 0 ≤ m ≤ .

C. 0 < m ≤ .
D. 0 ≤ m ≤ .
4
4
4
Câu 36. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 9 lần.
B. Tăng gấp 27 lần.
C. Tăng gấp 18 lần.
D. Tăng gấp 3 lần.
1−x2

1−x2

Câu 37. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 84cm3 .
B. 48cm3 .
C. 91cm3 .
D. 64cm3 .
Câu 38. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [−1; 2).
B. (1; 2).
C. [1; 2].

D. (−∞; +∞).

Câu 39. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {5; 3}.

B. {3; 3}.
C. {3; 4}.

D. {4; 3}.
8
Câu 40. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 82.
B. 64.
C. 96.
D. 81.
Trang 3/10 Mã đề 1


1
Câu 41. Hàm số y = x + có giá trị cực đại là
x
A. −1.
B. 2.

C. −2.

D. 1.

Câu 42. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 21.
B. 23.
C. 24.

D. 22.
Câu 43. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −3.
B. 3.
C. −6.
D. 0.
Câu 44. Cho z là√nghiệm của phương trình√ x2 + x + 1 = 0. Tính P = z4 + 2z3 − z
−1 − i 3
−1 + i 3
A. P =
.
B. P =
.
C. P = 2i.
D. P = 2.
2
2
Câu 45. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 7, 2.
B. 72.
C. −7, 2.

D. 0, 8.

Câu 46. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1

1
B. k = .
C. k = .
D. k = .
A. k = .
9
18
15
6
Câu 47. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 9.

B. 5.

Câu 48. Khối đa diện đều loại {5; 3} có số đỉnh
A. 20.
B. 12.

C. 0.

D. 7.

C. 8.

D. 30.

Câu 49. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.

B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 50. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
!
! của A lên BC là
5
8
7
A.
; 0; 0 .
B.
; 0; 0 .
C.
; 0; 0 .
D. (2; 0; 0).
3
3
3
Câu 51. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
B. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số nghịch biến trên khoảng (−2; 1).
Câu 52. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể tích của khối chóp S .ABC√ theo a



a3 15
a3 5
a3 15
a3
.
B.
.
C.
.
D.
.
A.
3
5
25
25
Câu 53. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≤ 0.
B. − < m < 0.
C. m ≥ 0.
D. m > − .
4
4
Câu 54. Khối đa diện đều loại {3; 3} có số mặt
A. 2.
B. 5.
C. 4.

D. 3.
Trang 4/10 Mã đề 1


!2x−1
!2−x
3
3
Câu 55. Tập các số x thỏa mãn


5
5
A. (−∞; 1].
B. [1; +∞).
C. (+∞; −∞).

D. [3; +∞).

Câu 56. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là −4.
B. Phần thực là 4, phần ảo là −1.
C. Phần thực là 4, phần ảo là 1.
D. Phần thực là −1, phần ảo là 4.
Câu 57. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối lập phương.
B. Khối bát diện đều.

C. Khối 12 mặt đều.


D. Khối tứ diện đều.

x2 − 5x + 6
Câu 58. Tính giới hạn lim
x→2
x−2
A. −1.
B. 5.

C. 0.

D. 1.

0 0 0 0
0
Câu 59.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 3
a 6
a 6
.
B.
.
C.
.
D.
.
A.

3
2
2
7
Câu 60.
Z Các khẳng định nào sau
Z đây là sai?
Z
Z

A.
Z
C.

f (x)dx = F(x) + C ⇒
!0
f (x)dx = f (x).

f (t)dt = F(t) + C. B.

k f (x)dx = k

Z
D.

f (x)dx, k là hằng số.
Z
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C.


Câu 61. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
120.(1, 12)3
100.(1, 01)3
A. m =
triệu.
B.
m
=
triệu.
(1, 12)3 − 1
3
(1, 01)3
100.1, 03
C. m =
triệu.
D.
m
=
triệu.
(1, 01)3 − 1
3
Câu 62. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m ≥ 3.
C. m > 3.

D. m ≤ 3.
Câu 63. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 13.
B. 13.
C. 2020.
D. log2 2020.
Câu 64. Dãy số nào sau đây có giới hạn là 0?
n2 + n + 1
n2 − 2
.
B.
u
=
.
A. un =
n
5n − 3n2
(n + 1)2
Câu 65. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.

C. un =

1 − 2n
.
5n + n2

D. un =


n2 − 3n
.
n2

C. Khối bát diện đều.

D. Khối 20 mặt đều.
[ = 60◦ , S O
Câu 66. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a. Khoảng cách từ A đến (S
√ BC) bằng


2a 57
a 57
a 57
A.
.
B. a 57.
C.
.
D.
.
19
19
17
2

Câu 67. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là

A. 2 − log2 3.
B. 3 − log2 3.
C. 1 − log2 3.
Câu 68. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) =
.
B. f 0 (0) = 1.
C. f 0 (0) = 10.
ln 10

D. 1 − log3 2.
D. f 0 (0) = ln 10.
Trang 5/10 Mã đề 1


Câu 69. [1] Biết log6
A. 108.



a = 2 thì log6 a bằng
B. 6.

C. 36.
D. 4.
log(mx)
= 2 có nghiệm thực duy nhất
Câu 70. [1226d] Tìm tham số thực m để phương trình
log(x + 1)

A. m ≤ 0.
B. m < 0 ∨ m > 4.
C. m < 0.
D. m < 0 ∨ m = 4.

Câu 71. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 2.
B. 4.
C. −4.

D. −2.

Câu 72. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 13 năm.
C. 12 năm.
D. 11 năm.
log7 16
Câu 73. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. 4.
B. −2.
C. 2.
D. −4.


x2 + 3x + 5
Câu 74. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. − .
B. .
C. 0.
D. 1.
4
4
x−3
bằng?
Câu 75. [1] Tính lim
x→3 x + 3
A. +∞.
B. 0.
C. −∞.
D. 1.
2
ln x
m
Câu 76. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 24.
B. S = 32.

C. S = 22.
D. S = 135.
Câu 77. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 22 triệu đồng.
B. 2, 25 triệu đồng.
C. 3, 03 triệu đồng.
D. 2, 20 triệu đồng.
Câu 78. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
a
2a
5a
8a
.
B. .
C.
.
D.
.
A.
9
9
9
9
12 + 22 + · · · + n2

Câu 79. [3-1133d] Tính lim
n3
2
1
A. .
B. .
C. 0.
D. +∞.
3
3
Câu 80. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 5.
B. V = 6.
C. V = 3.
D. V = 4.
1
Câu 81. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 3.
B. 1.
C. 2.
D. 4.
Trang 6/10 Mã đề 1


2

Câu 82. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là

A. 7.
B. 6.
C. 8.

D. 5.

Câu 83. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 8π.
B. 16π.
C. 32π.
D. V = 4π.
Câu 84. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 2.
B. 3.
C. 1.

D. 5.

Câu 85. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; 3).
B. A0 (−3; −3; −3).
C. A0 (−3; 3; 3).
D. A0 (−3; 3; 1).
Câu 86. [12214d] Với giá trị nào của m thì phương trình
A. 2 < m ≤ 3.

1
3|x−2|


= m − 2 có nghiệm

C. 0 < m ≤ 1.

B. 0 ≤ m ≤ 1.

D. 2 ≤ m ≤ 3.

1

Câu 87. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R \ {1}.
B. D = (1; +∞).
C. D = R.

D. D = (−∞; 1).

Câu 88. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là

3
3
3

a 6
a 5
a
15

A.
.
B.
.
C. a3 6.
D.
.
3
3
3
! x3 −3mx2 +m
1
Câu 89. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ (0; +∞).
B. m = 0.
C. m ∈ R.
D. m , 0.
Câu 90. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD
√ là
3
10a 3
.
D. 40a3 .
A. 20a3 .
B. 10a3 .
C.

3
Câu 91. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 6.
B. −6.
C. 5.

D. −5.

Câu 92. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.

D. Khối tứ diện đều.

2

C. Khối 20 mặt đều.

d = 60◦ . Đường chéo
Câu 93. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
0
0 0
0 0

BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0





4a3 6

a3 6
2a3 6
A.
.
B.
.
C.
.
D. a3 6.
3
3
3
Câu 94. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
d:
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (1; 0; 2).
B. ~u = (2; 2; −1).
C. ~u = (3; 4; −4).
D. ~u = (2; 1; 6).
Câu 95. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất


√ của hàm số. Khi đó tổng
√M + m
A. 7 3.
B. 8 3.
C. 8 2.
D. 16.
Trang 7/10 Mã đề 1


Câu 96. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−3; 1].
B. (−∞; −3].
C. [−1; 3].
D. [1; +∞).
Câu 97. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 5 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 5 mặt. D. 6 đỉnh, 6 cạnh, 6 mặt.
Câu 98. Khối đa diện đều loại {3; 4} có số cạnh
A. 10.
B. 12.

C. 6.

D. 8.

Câu 99. Dãy! số nào có giới hạn bằng 0?
n
n3 − 3n
6
.

B. un =
.
A. un =
5
n+1

!n
−2
C. un =
.
3

D. un = n2 − 4n.

Câu 100. ZCho hai hàm Zy = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
f 0 (x)dx =

A. Nếu
Z
B. Nếu

f (x)dx =

g0 (x)dx thì f (x) = g(x), ∀x ∈ R.

Z

g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z

0
C. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
2n + 1
3n + 2
1
B. .
2

Câu 101. Tính giới hạn lim
A. 0.

C.

2
.
3

D.

3
.
2


1

Z

xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b

Câu 102. Cho
0

1
1
B. .
C. 1.
D. 0.
A. .
2
4
Câu 103. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≥ 3.
B. −2 ≤ m ≤ 2.
C. −3 ≤ m ≤ 3.
D. m ≤ 3.
6
Câu 104. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2 f (x3 ) − √
. Tính
3x
+
1
Z 1
f (x)dx.

0

A. −1.

B. 4.

C. 6.

Câu 105. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 − sin 2x.
B. −1 + 2 sin 2x.
C. −1 + sin x cos x.

D. 2.
D. 1 + 2 sin 2x.

Câu 106. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lăng trụ tam giác.
B. Khối tứ diện.
C. Khối lập phương.
D. Khối bát diện đều.
3

Câu 107. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e3 .
B. e.
C. e5 .
D. e2 .
Câu 108. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.

B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 109. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
C. f (x) xác định trên K.

B. f (x) có giá trị lớn nhất trên K.
D. f (x) có giá trị nhỏ nhất trên K.
Trang 8/10 Mã đề 1


Câu 110. Tính lim
x→3

x2 − 9
x−3

C. 3.
D. +∞.
2mx + 1
1
Câu 111. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. −2.
B. −5.
C. 0.
D. 1.

A. 6.

B. −3.

Câu 112. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 113. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + 1.
B. T = e + 3.
C. T = 4 + .
D. T = e + .
e
e
Câu 114. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. e.
B. −2 + 2 ln 2.
C. 4 − 2 ln 2.
D. 1.
Câu 115. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 2).
B. Hàm số đồng biến trên khoảng (0; 2).
C. Hàm số nghịch biến trên khoảng (0; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).
Câu 116. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).

Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦√. Thể tích khối chóp S .ABCD
√ là

3
3
3
3
4a 3
a 3
8a 3
8a 3
.
B.
.
C.
.
D.
.
A.
3
9
9
9
d = 120◦ .
Câu 117. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 3a.
B. 2a.

C.
.
D. 4a.
2



x = 1 + 3t




Câu 118. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi




z = 1
qua điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là












x
=
−1
+
2t
x
=
1
+
7t
x
=
1
+
3t
x = −1 + 2t

















A. 
.
C. 
D. 
y = −10 + 11t . B. 
y=1+t
y = 1 + 4t .
y = −10 + 11t .
















z = 6 − 5t

z = 1 + 5t
z = 1 − 5t
z = −6 − 5t
Câu 119. [1] Tập
! xác định của hàm số! y = log3 (2x + 1) là
!
1
1
1
A. − ; +∞ .
B.
; +∞ .
C. −∞; − .
2
2
2

!
1
D. −∞; .
2

Câu 120. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số mặt của khối chóp.
B. Số cạnh của khối chóp bằng số mặt của khối chóp.
C. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.


4n2 + 1 − n + 2

Câu 121. Tính lim
bằng
2n − 3
A. +∞.
B. 2.
C. 1.

D.

3
.
2
Trang 9/10 Mã đề 1


Câu 122. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
Thể tích khối chóp S .ABC√là
vng góc√với đáy và S C = a 3. √

2a3 6
a3 3
a3 6
a3 3
A.
.
B.
.
C.
.

D.
.
9
2
12
4
2−n
Câu 123. Giá trị của giới hạn lim
bằng
n+1
A. 2.
B. 1.
C. 0.
D. −1.
2x + 1
Câu 124. Tính giới hạn lim
x→+∞ x + 1
1
A. −1.
B. 2.
C. 1.
D. .
2
0
Câu 125. Cho hai đường thẳng d và d cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có vơ số.
B. Khơng có.
C. Có hai.
D. Có một.

Câu 126. Khối đa diện đều loại {3; 4} có số mặt
A. 6.
B. 10.

C. 8.
D. 12.
a
1
, với a, b ∈ Z. Giá trị của a + b là
Câu 127. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
4 b ln 3
A. 1.
B. 7.
C. 2.
D. 4.
Câu 128. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
B. 1.
C. 3.
D. .
A. .
2
2
Câu 129. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm hình chóp tam giác đều, khơng có tứ diện đều.
B. Bốn tứ diện đều và một hình chóp tam giác đều.
C. Năm tứ diện đều.

D. Một tứ diện đều và bốn hình chóp tam giác đều.
Câu 130. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình chóp.
B. Hình lăng trụ.
C. Hình tam giác.

D. Hình lập phương.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2. A

3. A

4. A

5.

B

6. A


7.

C

9.

C

11.

8. A
C

10.
D

12.

13.

B

14. A

15.

B

16.


B
C

17. A

18.

19. A

20.

C

22.

C

21.

B

24. A

23. A
25.

D

26.


27. A
29.

30. A

B
D

33.

32.
36.

B
D

39. A
41.

C

43. A
45.

C
B
D

54.
56.


C
B
D

40.

D

42.

D

44.

D

49.

B

51.

B
D

55.

B


57.

B

61.

B

C

63. A
65. A

C

66. A
68.

D

59. A

60.
64.

38.

53.

58. A

62.

B

47. A

48. A
52.

B

34. A

C

37.

50.

B

28. A

31.
35.

D

67. A
D


69.
1

D


70.

D
C

72.
74. A
76.

71.

D

73.

D

75.

B

77. A


B

78. A
80.

D

82. A

79.

B

81.

B

84. A

85.

86. A

C

87.

B

88. A


89.

B

90. A

91.

D

92.

93.

D

94. A

95.

D

96. A

C

97.

C


98.

99.

C

100.

101.

C

102. A

103.

C

104.

B

106.

B

105.

B


107.

C

110. A

111.

112. A

C

113.

B

114. A

115.

B

116.

117.

C

D


118. A

119. A

120. A

121.

122.

C

123.

D

125.
129.

D

108. A

109. A

127.

B


124.

C

126.

C
B
C

128. A

B
D

130.

2

C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×