Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg (598)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (155.83 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

d = 300 .
Câu 1. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V của khối lăng trụ đã cho. √


3a3 3
a3 3
3
3
A. V = 6a .
B. V = 3a 3.
C. V =
.
D. V =
.
2
2
Câu 2. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 2.
B. 1.
C. +∞.


D. 3.
3
2
Câu 3. [2] Tìm m để giá trị lớn nhất của
+ 1)2 x trên [0; 1] bằng 8
√ hàm số y = 2x + (m √
C. m = ± 2.
D. m = ±1.
A. m = ±3.
B. m = ± 3.

Câu 4. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m ≥ 3.
C. m < 3.
D. m ≤ 3.
Câu 5. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (−∞; 2).
C. Hàm số đồng biến trên khoảng (0; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).
! x3 −3mx2 +m
1
Câu 6. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên khoảng
π
(−∞; +∞)
A. m = 0.
B. m ∈ (0; +∞).

C. m , 0.
D. m ∈ R.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 7. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là



a3 3
a3 3
a3 2
2
.
B.
.
C. 2a 2.
D.
.
A.
24
24
12
Câu 8. Khối đa diện đều loại {3; 5} có số cạnh
A. 12.
B. 8.
C. 30.
D. 20.
Câu 9. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2]. Giá
trị của biểu thức P = (m2 − 4M)2019

A. 0.
B. e2016 .
C. 1.
D. 22016 .
2−n
Câu 10. Giá trị của giới hạn lim
bằng
n+1
A. 2.
B. 1.
C. 0.
D. −1.
Câu 11. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 3).
B. (2; 4; 4).
C. (1; 3; 2).
D. (2; 4; 6).
Câu 12. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Khơng có.
B. Có hai.
C. Có một hoặc hai.
D. Có một.
x−3
bằng?
Câu 13. [1] Tính lim
x→3 x + 3
A. −∞.
B. 1.

C. +∞.
D. 0.
Câu 14. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
Trang 1/11 Mã đề 1


(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (II).

B. Cả ba mệnh đề.

Câu 15. Dãy số nào sau đây có giới hạn khác 0?
1
1
B. .
A. √ .
n
n

C. (I) và (III).

C.

sin n
.
n


Câu 16. [12214d] Với giá trị nào của m thì phương trình
A. 0 < m ≤ 1.

B. 0 ≤ m ≤ 1.

1
3|x−2|

D.

B. 2.

n+1
.
n

= m − 2 có nghiệm
D. 2 < m ≤ 3.

C. 2 ≤ m ≤ 3.

Câu 17. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 4.

D. (II) và (III).

1
3|x−1|


C. 3.

= 3m − 2 có nghiệm duy

D. 1.

3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a
a
a 2
2a
.
B. .
C. .
D.
.
A.
3
3
4
3

Câu 19. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể

theo a.
√ tích khối chóp S .ABC3 √


3
a 6
a 6
a3 6
a3 2
A.
.
B.
.
C.
.
D.
.
6
36
18
6
Câu 18. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =

Câu 20. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
1
ab
.

B. √
.
C. 2
.
A. √
.
D. √
2
a +b
2 a2 + b2
a2 + b2
a2 + b2
Câu 21. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh AC, AB. Tọa độ hình chiếu
!
! của A lên BC là
!
7
5
8
A.
; 0; 0 .
B. (2; 0; 0).
C.
; 0; 0 .
D.
; 0; 0 .
3
3

3
Câu 22. Mệnh đề nào sau đây sai?
A. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
B. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Z
C. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
!0
Z
D.
f (x)dx = f (x).

f (x)dx = F(x) + C.

[ = 60◦ , S O
Câu 23. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S
√ BC) bằng


a 57
a 57
2a 57
A. a 57.
B.
.
C.
.
D.
.

17
19
19
Trang 2/11 Mã đề 1


Câu 24. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp
√ là√
D. 6, 12, 24.
A. 8, 16, 32.
B. 2, 4, 8.
C. 2 3, 4 3, 38.
Câu 25. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −3 ≤ m ≤ 3.
B. −2 ≤ m ≤ 2.
C. m ≥ 3.
D. m ≤ 3.
1 − xy
Câu 26. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.



9 11 + 19
18 11 − 29
2 11 − 3
9 11 − 19

. B. Pmin =
. C. Pmin =
. D. Pmin =
.
A. Pmin =
9
9
21
3
Câu 27. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = −21.
C. P = −10.
D. P = 21.
1

Câu 28. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R \ {1}.
B. D = R.
C. D = (−∞; 1).

D. D = (1; +∞).

Câu 29. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 3ac
3b + 2ac
A.
.
B.

.
C.
.
c+1
c+2
c+2
Câu 30. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị lớn nhất trên K.
C. f (x) có giá trị nhỏ nhất trên K.

D.

3b + 2ac
.
c+3

B. f (x) liên tục trên K.
D. f (x) xác định trên K.

1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
n2 + 1
A. lim un = 0.
B. lim un = 1.
1
C. Dãy số un khơng có giới hạn khi n → +∞.
D. lim un = .
2

Câu 31. [3-1132d] Cho dãy số (un ) với un =


Câu 32. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −4.
B.
.
C. −2.
D. −7.
27
Câu 33. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 4}.
C. {5; 3}.

D. {3; 5}.

Câu 34. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. 2.
C. Vô nghiệm.
D. 1.
Câu 35. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim− f (x) = f (b).
B. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a

x→b

x→a


x→b

C. lim− f (x) = f (a) và lim+ f (x) = f (b).

x→a

x→b

x→a

x→b

D. lim+ f (x) = f (a) và lim+ f (x) = f (b).

Câu 36. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. 2.
C. Vô nghiệm.
D. 3.
Câu 37. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A.
.
B. 12.
C. 27.
D. 18.
2
Câu 38. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?

A. 10 mặt.
B. 8 mặt.
C. 6 mặt.

D. 4 mặt.
Trang 3/11 Mã đề 1


Câu 39. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
z
x+1 y−5
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
d:
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 1; 6).
B. ~u = (3; 4; −4).
C. ~u = (2; 2; −1).
D. ~u = (1; 0; 2).
Câu 40. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5}.
B. {3}.
C. {5; 2}.
D. {2}.
Câu 41. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 0.

B. 13.
C. 9.

D. Không tồn tại.

Câu 42. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Hai đường phân giác y = x và y = −x của các góc tọa độ.
B. Trục ảo.
C. Trục thực.
D. Đường phân giác góc phần tư thứ nhất.
Câu 43. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 12.
B. 3.
C. 10.

D. 27.

Câu 44. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P hoặc d ⊥ P.
B. d song song với (P).
C. d ⊥ P.
D. d nằm trên P.
Câu 45. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
ab
1
ab
A. √
.

B. 2
.
D. √
.
.
C. √
2
a +b
2 a2 + b2
a2 + b2
a2 + b2



x = 1 + 3t




Câu 46. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương




 trình là








x
=
1
+
3t
x = 1 + 7t
x
=
−1
+
2t
x
=
−1
+
2t

















.
D. 
A. 
y = −10 + 11t . C. 
y = 1 + 4t .
y=1+t
y = −10 + 11t . B. 

















z = 1 − 5t
z = 1 + 5t
z = −6 − 5t
z = 6 − 5t
Câu 47. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.




5 13
A. 2.
B. 2 13.
C.
.
D. 26.
13


4n2 + 1 − n + 2
Câu 48. Tính lim
bằng
2n − 3
3
A. 1.

B. +∞.
C. 2.
D. .
2
3
2
Câu 49. Cho hàm số y = x − 3x − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số nghịch biến trên khoảng (1; +∞).
C. Hàm số nghịch biến trên khoảng (−∞; 0).
D. Hàm số đồng biến trên khoảng (1; 2).
Câu 50. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 24 m.
B. 8 m.
C. 12 m.
D. 16 m.
Trang 4/11 Mã đề 1


Câu 51. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 2; m = 1.
B. M = e−2 − 2; m = 1.
C. M = e2 − 2; m = e−2 + 2.
D. M = e−2 + 1; m = 1.
Câu 52. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = ln 10.

B. f 0 (0) = 10.


C. f 0 (0) =

1
.
ln 10

D. f 0 (0) = 1.


Câu 53. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là

3

a 3
a3 3
a3
3
A.
.
B. a 3.
C.
.
D.
.
12
3
4
Câu 54. Hình nào trong các hình sau đây khơng là khối đa diện?

A. Hình lăng trụ.
B. Hình tam giác.
C. Hình chóp.

D. Hình lập phương.

2

Câu 55. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 8.
B. 5.
C. 6.

D. 7.

Câu 56. Phát biểu nào sau đây là sai?
A. lim un = c (Với un = c là hằng số).
1
C. lim √ = 0.
n

1
= 0 với k > 1.
nk
D. lim qn = 1 với |q| > 1.
B. lim

Câu 57. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có vơ số.

B. Có hai.
C. Khơng có.
D. Có một.

x2 + 3x + 5
Câu 58. Tính giới hạn lim
x→−∞
4x − 1
1
1
B. 0.
C. .
D. 1.
A. − .
4
4
9t
Câu 59. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 2.
B. 1.
C. 0.
D. Vô số.
Câu 60. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
A. 1.
B. 2.
C.

.
2

D.

1
.
2

Câu 61. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = 4 + .
B. T = e + 3.
C. T = e + .
D. T = e + 1.
e
e

Câu 62. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. − .
B. −3.
C. 3.
D. .
3
3
n−1

Câu 63. Tính lim 2
n +2
A. 0.
B. 3.
C. 1.
D. 2.
Câu 64. Dãy số nào có giới hạn bằng 0?
!n
6
2
A. un = n − 4n.
B. un =
.
5

n3 − 3n
C. un =
.
n+1

!n
−2
D. un =
.
3
Trang 5/11 Mã đề 1


Câu 65. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi

cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.424.000.
C. 102.016.000.
D. 102.423.000.
Câu 66.
Z Trong các khẳng định sau, khẳng định nào sai? Z
dx = x + C, C là hằng số.

A.
Z
C.

xα dx =

xα+1
+ C, C là hằng số.
α+1

1
dx = ln |x| + C, C là hằng số.
Z x
D.
0dx = C, C là hằng số.

B.

Câu 67. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .

A. A0 (−3; 3; 1).
B. A0 (−3; −3; 3).
C. A0 (−3; 3; 3).
D. A0 (−3; −3; −3).
Câu 68. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 1.
C. 2.
D. 3.
Câu 69. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 3.
B. 1.
C. 2.

D. 5.

Câu 70. Khối chóp ngũ giác có số cạnh là
A. 10 cạnh.
B. 11 cạnh.

D. 12 cạnh.

C. 9 cạnh.

Câu 71. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2

A. 6.

B. −1.


C. 2.

3

Z

6
3x + 1

. Tính

1

f (x)dx.
0

D. 4.

Câu 72. [1231h] Trong khơng gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
=
=
và d0 :
=
=
đường thẳng d :
2
3

−5
3
−2
−1
x y−2 z−3
x y z−1
.
B. =
=
.
A. = =
1 1
1
2
3
−1
x−2 y−2 z−3
x−2 y+2 z−3
C.
=
=
.
D.
=
=
.
2
3
4
2

2
2
Câu 73. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 10 năm.
B. 7 năm.
C. 8 năm.
D. 9 năm.
Câu 74. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
Thể tích khối chóp S .ABC √là
vng góc

√ với đáy và S C = a 3.3 √
3
a 3
a 3
2a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
4
2

9
12
cos n + sin n
Câu 75. Tính lim
n2 + 1
A. 0.
B. +∞.
C. −∞.
D. 1.
x+1
Câu 76. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. .
B. .
C. .
D. 1.
2
6
3
x+3
Câu 77. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. Vô số.
B. 3.

C. 2.
D. 1.
Trang 6/11 Mã đề 1


Câu 78. [2] Tổng các nghiệm của phương trình 3
A. − log3 2.

B. 1 − log2 3.

1−x

!x
1
=2+

9
C. − log2 3.

D. log2 3.

Câu 79. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 46cm3 .
B. 64cm3 .
C. 27cm3 .
D. 72cm3 .
Câu 80. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể tích của khối chóp S .ABC√ theo a



a3 15
a3 15
a3 5
a3
.
B.
.
C.
.
D.
.
A.
3
5
25
25
Câu 81. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt phẳng vuông góc với (ABCD).
Thể tích khối chóp

√ S .ABCD là
3
3
3

a 2
a 3
a 3
A.

.
B. a3 3.
C.
.
D.
.
2
2
4
Câu 82. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 20.
B. 3, 55.
C. 15, 36.
D. 24.
Câu 83. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
B. 1.
C. .
D. 3.
A. .
2
2
Câu 84. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là 1.
B. Phần thực là 4, phần ảo là −1.
C. Phần thực là −1, phần ảo là 4.

D. Phần thực là −1, phần ảo là −4.
x−1 y z+1
Câu 85. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. −x + 6y + 4z + 5 = 0.
B. 10x − 7y + 13z + 3 = 0.
C. 2x − y + 2z − 1 = 0.
D. 2x + y − z = 0.
!
3n + 2
2
Câu 86. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 3.
B. 2.
C. 4.
D. 5.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 87. [3-12217d] Cho hàm số y = ln
x+1
0

y
0
y
A. xy = e − 1.
B. xy = −e − 1.
C. xy0 = −ey + 1.
D. xy0 = ey + 1.
Câu 88. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
a
8a
5a
2a
A. .
B.
.
C.
.
D.
.
9
9
9
9
2

Câu 89. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log2 3.
B. 1 − log3 2.

C. 2 − log2 3.

D. 3 − log2 3.

Câu 90. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
Trang 7/11 Mã đề 1


cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ.
100.1, 03
120.(1, 12)3
triệu.
B.
m
=
triệu.
A. m =
(1, 12)3 − 1
3
100.(1, 01)3
(1, 01)3
C. m =
triệu.
D. m =
triệu.
3
(1, 01)3 − 1

Câu 91. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
A.
C.
.
B. a 6.
.
D.
.
2
6
3
Câu 92. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Hai mặt.
B. Ba mặt.
C. Một mặt.

D. Bốn mặt.

Câu 93. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 5.


B. 9.

C. 0.

D. 7.

Câu 94. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
B. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
D. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Câu 95. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.

B. m ≥ 3.
C. m > 3.
D. m ≤ 3.
Câu 96. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng



a 2
a 2
B.
.
C.
.
D. 2a 2.
A. a 2.
4
2
Câu 97.! Dãy số nào sau đây có giới! hạn là 0?
n
n
5
5
A.
.
B. − .
3
3


!n
1
C.
.
3

!n
4
D.
.
e

Câu 98. Cho số phức z thỏa mãn |z +
√ 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
C. |z| = 10.
D. |z| = 17.
A. |z| = 10.
B. |z| = 17.
Câu 99. Khối đa diện đều loại {4; 3} có số mặt
A. 10.
B. 8.

C. 12.

D. 6.

Câu 100. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 6 lần.
B. Tăng gấp 4 lần.

C. Tăng gấp đôi.
D. Tăng gấp 8 lần.
0 0 0 0
Câu 101.
a. Khoảng cách từ C đến √
AC 0 bằng
√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh √
a 6
a 6
a 6
a 3
A.
.
B.
.
C.
.
D.
.
2
3
7
2

Trang 8/11 Mã đề 1


Câu 102. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; +∞).

B. (0; 2).
C. (−∞; 0) và (2; +∞). D. (−∞; 2).
8
Câu 103. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 64.
B. 81.
C. 82.
D. 96.
tan x + m
Câu 104. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (1; +∞).
B. [0; +∞).
C. (−∞; 0] ∪ (1; +∞). D. (−∞; −1) ∪ (1; +∞).
Câu 105. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 5 mặt. B. 6 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 6 cạnh, 6 mặt. D.
!
1
1
1
Câu 106. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3

A. +∞.
B. .
C. 2.
D.
2
x2 − 3x + 3
Câu 107. Hàm số y =
đạt cực đại tại
x−2
A. x = 3.
B. x = 0.
C. x = 2.
D.
x+1
Câu 108. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. 3.
B. .
C. .
D.
3
4
Câu 109. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.
C. Khối tứ diện đều.
D.


5 đỉnh, 9 cạnh, 6 mặt.

5
.
2
x = 1.

1.
Khối lập phương.

x2 −4x+5

Câu 110. [2] Tổng các nghiệm của phương trình 3
= 9 là
A. 4.
B. 3.
C. 5.
D. 2.
2
x − 12x + 35
Câu 111. Tính lim
x→5
25 − 5x
2
2
A. .
B. −∞.
C. +∞.
D. − .
5

5
Câu 112. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với
đáy một góc 45◦ và AB = 3a, BC = 4a.
√ Thể tích khối chóp S .ABCD là
3
10a 3
.
C. 40a3 .
D. 10a3 .
A. 20a3 .
B.
3
2n − 3
Câu 113. Tính lim 2
bằng
2n + 3n + 1
A. +∞.
B. 0.
C. 1.
D. −∞.
!
1
1
1
Câu 114. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3

B. 1.
C. 0.
D. 2.
A. .
2

Câu 115. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả
bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. Vơ số.
C. 64.
D. 63.
Câu 116. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi
M, N và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,
√ N, P bằng



14 3
20 3
A.
.
B. 8 3.
C.
.
D. 6 3.
3
3
Trang 9/11 Mã đề 1



Câu 117. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 2.
B. 0.
C. 3.

D. 1.

Câu 118. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối bát diện đều.

C. Khối 12 mặt đều.

D. Khối tứ diện đều.

Câu 119. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 3.

C. 4.

D. 2.

Câu 120. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9
tháng thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không
thay đổi trong thời gian gửi.
A. 0, 5%.
B. 0, 8%.

C. 0, 6%.
D. 0, 7%.
Câu 121. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −7.
B. −3.
C. −5.

D. Không tồn tại.

Câu 122. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 25 m.
C. 1587 m.
D. 27 m.
Câu 123. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 32π.
B. 8π.
C. 16π.
D. V = 4π.
Câu 124. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là

BC là
4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
24
6
36
Câu 125. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 4.
C. 3.
D. 2.
Câu 126. Khối đa diện đều loại {5; 3} có số mặt
A. 12.
B. 20.


C. 30.
D. 8.

Câu 127. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. Vô nghiệm.
B. 2 nghiệm.
C. 3 nghiệm.
D. 1 nghiệm.
q
Câu 128. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [0; 1].
C. m ∈ [−1; 0].
D. m ∈ [0; 4].
Câu 129. Biểu thức nào sau đây√khơng có nghĩa
−3
A. (−1)−1 .
B.
−1.

C. 0−1 .


D. (− 2)0 .

Câu 130. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều

rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 160 cm2 .
C. 120 cm2 .
D. 1200 cm2 .
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

C

2. A

3.

C

4.

5.

C

6. A


7. A

8.

9. A

10.

11.

D

12.

13.

D

14. A

15.

D

16.

17.

D


18. A

C
D
C
D

20.

C

19.

B

D

21.

D

22. A

23.

D

24.


D

26.

D
D

25. A
27.

B

28.

29.

B

30.

B

31.

D

32.

33.


D

34.

B

36.

B

35. A
37.

D

38.

39.

D

40. A

41. A
43.

44. A

B
C


46. A

47.

C

48. A
50.

49. A
B

53.

C

54.

67.

D

58. A

B

60.
B


63. A
65.

B

56.

D

59. A
61.

D

52. A

55.
57.

C

42. A

45.

51.

C

B


62.

D

64.

D

66.

B

68.

C
1

C
B


69.

70. A

C

71.


D

72. A

73.

D

74.

75. A
77.

76.
B

D
B

78.

C

79.

C

80.

C


81.

C

82.

C

83. A
85.

84.

B

86.

B

87. A

88.

C
B

89.

C


90.

D

91.

C

92.

D

93.

B

94.

C

95.

B

96.

C

98.


C

97.

C

99.

100.

D

101.

B

102.

103.

B

104. A

105. A
107.

D
C


109.

119.

106.

C

108.

C

112. A
114.

B

B
D

116.

115. A
117.

C

110. A


111. A
113.

D

118. A

B
C

121.

D

120.

D

122.

D

124. A

125.

B

126. A


127.

B

128.

129.

C

130. A

2

C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×