Tải bản đầy đủ (.pdf) (77 trang)

Frequency response 2012 mk

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (3.05 MB, 77 trang )

N
g
u
y
ễn Côn
g
Phươn
g
gy g g
Electric Circuit Theory
Electric

Circuit

Theory
Frequency Response
Contents
1. Basic Elements Of Electrical Circuits
2. Basic Laws
3. Electrical Circuit Analysis
4. Circuit Theorems
5. Active Circuits
6. Capacitor And Inductor
7. First Order Circuits
8
SdOdCiit
8
.
S
econ
d



O
r
d
er
Ci
rcu
it
s
9. Sinusoidal Steady State Analysis
10. AC Power Analysis
11
Three
phase Circuits
11
.
Three
-
phase

Circuits
12. Magnetically Coupled Circuits
13. Frequency Response
14
The Laplace Transform
14
.
The

Laplace


Transform
15. Two-port Networks
Frequency Response - sites.google.com/site/ncpdhbkhn
2
Frequenc
y
Response

Transfer Function
Transfer

Function
• The Decibel Scale

Bode Plots

Bode

Plots
• Series Resonance

Parallel Resonance

Parallel

Resonance
• Passive Filters
A ti Filt


A
c
ti
ve
Filt
ers
• Scaling
Frequency Response - sites.google.com/site/ncpdhbkhn
3
Transfer Function (1)
()
in

I
()
out

I
+
()
in

V
+
()
out

V
()


H


()
()



Out
H
()
()



H
In
()

V
()

I
()
()
()
out
voltage
in





V
H
V
()
()
()
out
current
in




I
H
I
()
()
out


V
H
()
()
out



I
H
Frequency Response - sites.google.com/site/ncpdhbkhn
4
()
()
()
out
impedance
in



H
I
()
()
()
out
admittance
in



H
V
Transfer Function (2)
()
in


I
()
out

I
+
()
in

V
+
()
out

V
()

H


()
()



Out
H
()
()




H
In
12
( ) 0 , , (zeros)
z
z


Out
() 0 (poles)
pp


In
Frequency Response - sites.google.com/site/ncpdhbkhn
5
12
() 0
, ,
(poles)
pp


In
Transfer Function (3)
Ex. 1
v

s
= 100sinωt (V). Find the transfer function
+

+
5

V
o
/V
s
and sketch its frequency response.

()
s
vt
o
v
2H
2
52
s
o
j
j


V
V
52

o
j
j


2
()
5
2
o
v
s
j
j





V
H
V
5
s
j

V
2
22
2(5 2) 4 10

(5 2 )(5 2 ) 25 4 25 4
v
jj
jH
jj
  
  


  
v

+

+
s
V
V
5
2
j

42
1
16 100 5
H



Frequency Response - sites.google.com/site/ncpdhbkhn

6

s
o
V
2
j

1
2
16 100 5
;tan
425 2
vv
H








Transfer Function (4)
Ex. 1
v
s
= 100sinωt (V). Find the transfer function
+


+
5

V
o
/V
s
and sketch its frequency response.

()
s
vt
o
v
2H
42
1
2
16 100 5
;
tan
vv
H





2
;

425 2
vv




1
80
90
0.6
0.8
()
v
H

50
60
70
80
0.2
0.4
10
20
30
40
()
v




Frequency Response - sites.google.com/site/ncpdhbkhn
7
0 5 10 15 20 25 30 35 40 45 50

0 5 10 15 20 25 30 35 40 45 50
10

Transfer Function (5)
Ex. 2
v
s
= 100sinωt (V). Find the transfer functions
+

+
5

o
i
i
i
V
o
/V
s
, I
o
/I
i
, V

o
/I
i
, & I
o
/V
s
.

()
s
vt
o
v
2H
1mF
Frequency Response - sites.google.com/site/ncpdhbkhn
8
Frequenc
y
Response

Transfer Function
Transfer

Function
• The Decibel Scale

Bode Plots


Bode

Plots
• Series Resonance

Parallel Resonance

Parallel

Resonance
• Passive Filters
A ti Filt

A
c
ti
ve
Filt
ers
• Scaling
Frequency Response - sites.google.com/site/ncpdhbkhn
9
The Decibel Scale
P
2
10
1
log
P
G

P

2
10
1
10log
dB
P
G
P

2
10
1
20log
dB
V
G
V

2
10
1
20log
dB
I
G
I

Frequency Response - sites.google.com/site/ncpdhbkhn

10
1
I
Frequenc
y
Response

Transfer Function
Transfer

Function
• The Decibel Scale

Bode Plots

Bode

Plots
• Series Resonance

Parallel Resonance

Parallel

Resonance
• Passive Filters
A ti Filt

A
c

ti
ve
Filt
ers
• Scaling
Frequency Response - sites.google.com/site/ncpdhbkhn
11
Bode Plots (1)
Semilo
g
p
lots of the ma
g
nitude
(
in decibels
)
and
p
hase
(
in de
g
rees
)
g
pg()p(g)
of a transfer function versus frequency
10
20log

H

H

H
10
20log
H












123 1
HHHHH


12
H



23

H





3
123

HHH


123




123

HHH
123



10 10 1 10 2 10 3
20log 20log 20log 20log HH H H



Frequency Response - sites.google.com/site/ncpdhbkhn

12
123

 




Bode Plots (2)
2
1
1
2
() 1 1
jj j
Kj











1
2
2

() 1 1
()
2
1 1
kk
Kj
z
jj j




























H
1 nn
p








:gainK
1
: pole at the origin
j

1
: simle pole
1
j


2
2
1

: quadratic pole
2
1
jj
 



:
z
e
r
oatt
h
eo
ri
g
in
j

1
p
1:simlezero
j


1
nn






2
1
2
1 : quadratic zero
jj
 



Frequency Response - sites.google.com/site/ncpdhbkhn
13
:eoatteog
j

1
z
1 : quadratic zero
kk





Bode Plots (3)
10
20log
()

dB
HK
K





H
()
0
K






H
H

10
20log K
0
0.1
1
10 100

0.1
1

10 100

Frequency Response - sites.google.com/site/ncpdhbkhn
14
Bode Plots (4)
10
20log
1
()
dB
H







H
o
()
90
j









H
H
01
1
10

20
0
01
1
10

o
0

0
.
1
1
10

20
0
.
1
1
10

o

90
Frequency Response - sites.google.com/site/ncpdhbkhn
15
Bode Plots (5)
10
20log
()
dB
H
j







H
o
()
90
j







H

H
o
90

20
0
H
o
90
o
0
0.1
1
10

0
20
0.1
1
10

o
0
Frequency Response - sites.google.com/site/ncpdhbkhn
16
Bode Plots (6)
10
20log 1
1
dB

j
H
p


 


1
1
1
1
1
()
1
tan
p
j
p
p

















H
H
0
5
-10
-5
-20
-15
Frequency Response - sites.google.com/site/ncpdhbkhn
17
-25

1
0.1p
1
p
1
10 p
Bode Plots (7)
10
20log 1
1
dB
j

H
p


 


1
1
1
1
1
()
1
tan
p
j
p
p

















H

1
0.1
p
1
p
1
10
p

1
100
p
-10
0
-40
-30
-20
80
-70
-60
-50
Frequency Response - sites.google.com/site/ncpdhbkhn
18

-100
-90
-
80
Bode Plots (8)
10
20log 1
dB
j
H
z
j





1
1
1
1
() 1
tan
z
j
z
z







 








H
H
20
25
10
15
0
5
Frequency Response - sites.google.com/site/ncpdhbkhn
19
-5

1
0.1z
1
z
1
10z

Bode Plots (9)
10
20log 1
dB
j
H
z
j





1
1
1
1
() 1
tan
z
j
z
z






 









H

80
90
100
40
50
60
70
10
20
30
40
Frequency Response - sites.google.com/site/ncpdhbkhn
20

1
0.1z
1
z
1
10z

0
10
1
100z
Bode Plots (10)
2
2
10
2
20log 1
1
dB dB
jj
HH
 




  




2
2
1
2
22
1

()
2
2/
1
tan
1/
nn
n
nn
n
jj
j


 

























H


10
20
2
0.05


2
0.2


H
-10
0
2
0.707


2

0.4


-30
-20
2
1.5


2

Frequency Response - sites.google.com/site/ncpdhbkhn
21
-40

1
0.1

1

1
10

1
100

Bode Plots (11)
2
2
10

2
20log 1
1
dB dB
jj
HH
 




  




2
2
1
2
22
1
()
2
2/
1
tan
1/
nn
n

nn
n
jj
j


 

























H


20
0


1
0.1

1

1
10

1
100

-
80
-60
-40
-
20
2
1.5


2

0707


-
140
-120
-100
-
80
2
0
.
707

2
0.4


2
0.2


Frequency Response - sites.google.com/site/ncpdhbkhn
22
-180
-160
140
2

2

0.05


Bode Plots (12)
2
2
10
2
2
20log 1
2
dB dB
jj
HH
jj
 





  





2
1
2

22
2
() 1
2/
tan
1/
nn
nn
n
n
jj
j













  














H
30
40
2
1.5


H


10
20
2
0.707


2
0.4


-10

0
02

-20
2
0
.
2


2
0.05



1
0.1

1

1
10

1
100

Frequency Response - sites.google.com/site/ncpdhbkhn
23
Bode Plots (13)
2

2
10
2
2
20log 1
2
dB dB
jj
HH
jj
 





  





2
1
2
22
2
() 1
2/
tan

1/
nn
nn
n
n
jj
j













  














H


140
160
180

2
0.05


2
0.2


04


80
100
120
2
0
.
4



20
40
60
2
1.5


2
0.707


Frequency Response - sites.google.com/site/ncpdhbkhn
24
0
20
1
0.1

1

1
10

1
100


Bode Plots (14)
K

()
N
j
1
1
N
j



K
()
N
j

()
N
j

1
j
z




10
20log
K


20 dB/decadeN
1

20 dB/decadeN

1

20 dB/decadeN
z


o
0
o
90N

o
90
N
10
o
90N
o
0
Frequency Response - sites.google.com/site/ncpdhbkhn
25


o
90

N


z
10
z
10
z

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×