Tải bản đầy đủ (.pdf) (5 trang)

Đề luyện thi thpt môn toán (951)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (120.55 KB, 5 trang )

Free LATEX

ĐỀ LUYỆN THI THPT QG MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 6 trang)
Mã đề 001
1
là đúng?
x
B. Hàm số nghịch biến trên R.
D. Hàm số đồng biến trên (−∞; 0) ∪ (0; +∞).

Câu 1. Kết luận nào sau đây về tính đơn điệu của hàm số y =
A. Hàm số nghịch biến trên (0; +∞).
C. Hàm số đồng biến trên R.
R1 √3
Câu 2. Tính I =
7x + 1dx
0

21
20
45
60
B. I = .
C. I = .
D. I = .
A. I = .
28
8


7
28
Câu 3. Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + 5 = 0. Giao điểm của (P)
và trục tung có tọa độ là
A. (0; 0; 5).
B. (0; −5; 0).
C. (0; 5; 0).
D. (0; 1; 0).
Câu 4. Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD là hình bình hành. Hình chiếu vng góc của A′
lên mặt phẳng (ABCD)trùng với giao điểm của AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc giữa mặt
bên (ABB′ A′ ) và mặt đáy bằng 450 . Tính thể tích khối tứ diện ACB′ D′ theo a.
A. 20a3 .
B. 100a3 .
C. 30a3 .
D. 60a3 .

x
Câu 5. Đồ thị hàm số y = ( 3 − 1) có dạng nào trong các hình H1, H2, H3, H4 sau đây?
A. (H4).
B. (H1).
C. (H3).
D. (H2) .
Câu 6. Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3). Biết C là một
điểm trên mặt phẳng (P):x + z − 27 = 0 sao cho tồn tại các điểm B, D tương ứng thuộc các tia AM, AN
để tứ giác ABCD là hình thoi. Tọa độ điểm C là:
21
D. C(6; −17; 21).
A. C(6; 21; 21).
B. C(20; 15; 7).
C. C(8; ; 19).

2
Câu 7. Hàm số nào sau đây đồng biến trên R?
A. y = x2 .
B. y = x√4 + 3x2 + 2. √
C. y = tan x.
D. y = x2 + x + 1 − x2 − x + 1.
Câu 8. √Hình nón có bán kính đáy R, đường sinh l thì diện
√ tích xung quanh của nó bằng
B. πRl.
C. π l2 − R2 .
D. 2πRl.
A. 2π l2 − R2 .



Câu 9. Cho hình chóp S .ABC có S A⊥(ABC). Tam giác ABC vuông cân tại B và S A = a 6, S B = a 7.
Tính góc giữa SC và mặt phẳng (ABC).
A. 600 .
B. 450 .
C. 1200 .
D. 300 .
Câu 10. Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − 1 = 0 và mặt phẳng
(P) : x + y − 3z + m − 1 = 0. Tìm tất cả m để (P)cắt (S ) theo giao tuyến là một đường trịn có bán kính
lớn nhất.
A. m = 5.
B. m = −7.
C. m = 9.
D. m = 7.
Câu 11. Tìm tất cả các giá trị của tham số m để hàm số y = mx − sin xđồng biến trên R.
A. m ≥ 0.

B. m > 1.
C. m ≥ 1.
D. m ≥ −1.
Câu 12. Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh bằng a. Tính thể tích khối chóp D.ABC ′ D′ .
a3
a3
a3
a3
A. .
B. .
C. .
D. .
9
4
6
3




3
Câu 13. Cho hàm số y =


x


− mx + 5. Hỏi hàm số đã cho có thể có nhiều nhất bao nhiêu điểm cực
trị.
A. 1.

B. 2.
C. 4.
D. 3.
Trang 1/6 Mã đề 001


Câu 14. Tìm tất cả các giá trị của tham số m sao cho đồ thị của hai hàm số y = x3 +x2 và y = x2 +3x+mcắt
nhau tại nhiều điểm nhất.
A. 0 < m < 2.
B. m = 2.
C. −2 < m < 2.
D. −2 ≤ m ≤ 2.
Câu 15. Cho hình trụ có hai đáy là hai đường trịn (O; r) và (O′ ; r). Một hình nón có đỉnh O và có đáy là
hình trịn (O′ ; r). Mặt xung quanh của hình nón chia khối trụ thành hai phần. Gọi V1 là thể tích của khối
V1
nón, V2 là thể tích của phần cịn lại. Tính tỉ số .
V2
V1 1
V1 1
V1 1
V1
A.
= .
B.
= .
C.
= .
D.
= 1.
V2 3

V2 6
V2 2
V2
Câu 16. Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2). Tìm tọa độ
điểm C sao cho ABCD là hình thang có hai cạnh đáy AB, CD và có góc C bằng 450 .
A. C(5; 9; 5).
B. C(1; 5; 3).
C. C(3; 7; 4).
D. C(−3; 1; 1).
1
Câu 17. Kết luận nào sau đây về tính đơn điệu của hàm số y = là đúng?
x
A. Hàm số nghịch biến trên (0; +∞).
B. Hàm số đồng biến trên R.
C. Hàm số nghịch biến trên R.
D. Hàm số đồng biến trên (−∞; 0) ∪ (0; +∞).
Câu 18. Cho hình chóp đều S .ABCD có đáy ABCD là hình vng cạnh 2a, đường cao của hình chóp
bằng a. Tính góc giữa hai mặt phẳng (S AC) và (S AB).
A. 450 .
B. 600 .
C. 360 .
D. 300 .
Câu 19. Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y = −x2 + 2mx − 1 − 2m trên
đoạn [−1; 2] nhỏ hơn 2.
7
C. m ∈ (−1; 2).
D. m ≥ 0.
A. m ∈ (0; 2).
B. −1 < m < .
2

Câu 20. Khối trụ có bán kính đáy bằng chiều cao và bằng Rthì thể tích của nó bằng
A. 4πR3 .
B. πR3 .
C. 2πR3 .
D. 6πR3 .

x
Câu 21. Đồ thị hàm số y = ( 3 − 1) có dạng nào trong các hình H1, H2, H3, H4 sau đây?
A. (H4).
B. (H1).
C. (H2).
D. (H3).
Câu 22. Phương trình tiếp tuyến với đồ thị hàm số y = log5 x tại điểm có hồnh độ x = 5 là:
x
1
x
1
A. y =
−1+
.
B. y =
+1−
.
5 ln 5
ln 5
5 ln 5
ln 5
x
1
x

C. y =

.
D. y =
+ 1.
5 ln 5 ln 5
5 ln 5
Câu 23. Tính diện tích S của hình phẳng được giới hạn bởi các đường y = x2 , y = −x
1
5
1
1
B. S = .
C. S = .
D. S = .
A. S = .
3
6
6
2
Câu 24. Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1). Tìm tọa độ điểm E thuộc
trục tung sao cho tam giác MNEcân tại E.
A. (0; 6; 0).
B. (0; −2; 0).
C. (0; 2; 0).
D. (−2; 0; 0).
Câu 25. Cho a > 1; 0 < x < y. Bất đẳng thức nào sau đây là đúng?
A. ln x > ln y.
B. loga x > loga y.
C. log x > log y.


D. log 1 x > log 1 y.

a
a
Câu 26. Tính thể tích khối trịn xoay khi quay xung quanh trục hồnh hình phẳng giới hạn bởi các đường
1
y = , x = 1, x = 2 và trục hoành.
x

π
π

.
B. V = .
C. V = .
D. V =
.
A. V =
2
3
2
5
Câu 27. Cho hình chóp S .ABCcó S A vng góc với mặt phẳng (ABC), S A = a, AB = a, AC = 2a,
d = 600 . Tính thể tích khối cầu ngoại tiếp hình chóp S .ABC.
BAC



5 5π 3

5 5 3
20 5πa3
5
A. V =
a.
B. V =
πa .
C. V =
.
D. V = πa3 .
2
6
3
6
Trang 2/6 Mã đề 001


Câu 28. Đồ thị như hình bên là đồ thị của hàm số nào?
−2x + 3
2x + 2
2x − 1
A. y =
.
B. y =
.
C. y =
.
1−x
x+1
x−1

Câu 29. Tập xác định của hàm số y = logπ (3 x − 3) là:
A. (1; +∞).
B. [1; +∞).
C. Đáp án khác.

D. y =

2x + 1
.
x+1

D. (3; +∞).

Câu 30. Trong không gian với hệ tọa độ Oxyz, cho A(1; −2; 1), B(−2; 2; 1), C(1; −2; 2). Đường phân
giác trong góc A của tam giác ABC cắt mặt phẳng (P) : x + y + z − 6 = 0 tại điểm nào trong các điểm
sau đây:
A. (1; −2; 7).
B. (−2; 2; 6).
C. (4; −6; 8).
D. (−2; 3; 5).
1 3 2
x −2x +3x+1
Câu 31. Cho hàm số f (x) = e 3
. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng(−∞; 1) và nghịch biến trên khoảng(3; +∞).
B. Hàm số đồng biến trên khoảng (−∞; 1) và (3; +∞).
C. Hàm số nghịch biến trên khoảng(−∞; 1) và đồng biến trên khoảng(3; +∞).
D. Hàm số nghịch biến trên khoảng (−∞; 1) và (3; +∞).

Câu 32. Cho hình chóp tứ giác S .ABCD có đáy là hình vng cạnh bằng a 2, tam giác S AB vuông cân

tại S và√mặt phẳng (S AB) vng góc với mặt phẳng đáy. √
Khoảng cách từ A đến mặt
√ phẳng (S CD) là

a 2
a 10
a 6
.
B. a 2.
.
D.
.
C.
A.
5
3
2
Câu 33. Cường độ một trận động đất M (richter) được cho bởi công thức M = log A − log A0 , với A là
biên độ rung chấn tối đa và A0 là một biên độ chuẩn (hằng số). Đầu thế kỷ 20, một trận động đất ở San
Francisco có cường độ 8,3 độ Richter. Trong cùng năm đó, trận động đất khác Nam Mỹ có biên độ mạnh
hơn gấp 4 lần. Cường độ của trận động đất ở Nam Mỹ có kết quả gần đúng bằng:
A. 33,2.
B. 11.
C. 8,9.
D. 2,075.
Câu 34. Tìm tất cả các giá trị của tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhất và nhỏ nhất
trên đoạn [ -1; 3] lần lượt là a, b sao cho a.b = −36.
A. m = 0 hoặc m = −16.
B. m = 0 hoặc m = −10.
C. m = 1.

D. m = 4.
R
ax + b 2x
)e + C. Khi đó giá trị a + b là:
Câu 35. Biết a, b ∈ Z sao cho (x + 1)e2x dx = (
4
A. 4.
B. 3.
C. 2.
D. 1.
Câu 36. Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD là hình chữ nhật,AB = a; AD = 2a;

AA′ =√2a. Gọi α là số đo góc giữa
√ hai đường thẳng AC và DB . Tính giá trị cos α.√
5
3
1
3
A.
.
B.
.
C. .
D.
.
5
2
2
4
Câu 37. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh

√ a. Hai mặt phẳng (S AB), (S AC) cùng
2
vng góc
với
mặt
phẳng
(ABC),
diện
tích
tam
giác
S
BC

a
3. Tính thể tích khối



√ chóp S .ABC.
3
3
3
3
a 15
a 5
a 15
a 15
A.
.

B.
.
C.
.
D.
.
16
3
8
4
x2 + mx + 1
Câu 38. Tìm tất cả các giá trị của tham số m để hàm số y =
đạt cực tiểu tại điểm x = 0.
x+1
A. m = 1.
B. m = 0.
C. Khơng có m.
D. m = −1.
3x
Câu 39. Tìm tất cả các giá trị của tham số mđể đồ thị hàm số y =
cắt đường thẳng y = x + m tại
x−2
7
hai điểm phân biệt A, B sao cho tam giác OAB nhận G(1; ) làm trọng tâm.
3
A. m = 1.
B. Không tồn tại m.
C. m = 2.
D. m = −2.
Câu 40. Hàm số y = x3 − 3x2 + 1 có giá trị cực đại là:

A. 4.
B. 2.
C. −3.

D. 1.
Trang 3/6 Mã đề 001


Câu 41. Hàm số nào trong các hàm số sau đồng biến trên R.
4x + 1
A. y =
.
B. y = x3 + 3x2 + 6x − 1.
x+2
C. y = −x3 − x2 − 5x.
D. y = x4 + 3x2 .
Câu 42. Chọn mệnh đề đúng trong các mệnh đề sau:
R
R
e2x
x
x
2x
A. 5 dx =5 + C .
B. e dx =
+ C.
2
R
R
(2x + 1)3

2
+C .
C. sin xdx = cos x + C .
D. (2x + 1) dx =
3


Câu 43. Cho bất phương trình 3

2(x−1)+1

− 3 x ≤ x2 − 4x + 3. Tìm mệnh đề đúng.

A. Bất phương trình đúng với mọi x ∈ (4; +∞).
B. Bất phương trình đúng với mọi x ∈ [ 1; 3].
C. Bất phương trình có nghiệm thuộc khoảng (−∞; 1).
D. Bất phương trình vơ nghiệm.
Câu 44. Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD là hình chữ nhật,AB = a; AD = 2a;
AA′ = 2a. Gọi α là số đo góc giữa hai đường thẳng AC và DB′ . Tính giá trị cos α.



5
3
3
1
.
B.
.
C.

.
D. .
A.
5
4
2
2
Câu 45. Hàm số nào trong các hàm số sau có đồ thị như hình vẽ bên.
A. y = x3 − 3x2
.

B. y = −x4 + 2x2 .

C. y = −2x4 + 4x2 .

D. y = −x4 + 2x2 + 8.

Câu 46. Một hình trụ (T ) có diện tích xung quanh bằng 4π và thiết diện qua trục của hình trụ này là một
hình vng. Diện tích toàn phần của (T ) là
A. 6π.

B. 12π.

C. 8π.

D. 10π.

0
d
Câu 47. Cho hình chóp S .ABC có đáy ABC

√ là tam giác vuông tại A; BC = 2a; ABC = 60 . Gọi Mlà
trung điểm cạnh BC, S A = S C = S M = a 5. Tính khoảng cách từ S đến mặt phẳng (ABC).


A. a 2.
B. a.
C. 2a.
D. a 3.

Câu 48. Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) và mặt
phẳng (P) : x+2y+z−4 = 0. Giả sử M(a; b; c) là một điểm trên mặt phẳng (P) sao cho MA2 +MB2 +2MC 2
nhỏ nhất. Tính tổng a + b + c.
A. 3.

B. 4.

Câu 49. Biết a, b ∈ Z sao cho
A. 4.

R

C. 1.
(x + 1)e2x dx = (

B. 2.

D. 2.

ax + b 2x
)e + C. Khi đó giá trị a + b là:

4
C. 1.
D. 3.

Câu 50. Hàm số y = x4 − 4x2 + 1 đồng biến trên khoảng nào trong các khoảng sau đây.
A. (−3; 0).

B. (3; 5).

C. (−1; 1).

D. (1; 5).
Trang 4/6 Mã đề 001


- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/6 Mã đề 001



×