Free LATEX
ĐỀ LUYỆN THI THPT QG MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001
Câu 1. Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD là hình bình hành. Hình chiếu vng góc của A′
lên mặt phẳng (ABCD)trùng với giao điểm của AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc giữa mặt
bên (ABB′ A′ ) và mặt đáy bằng 450 . Tính thể tích khối tứ diện ACB′ D′ theo a.
A. 60a3 .
B. 100a3 .
C. 30a3 .
D. 20a3 .
Câu 2. Cho lăng trụ đều ABC.A′ B′C ′ có tất cả các cạnh đều bằng a. Tính khoảng cách giữa hai đường
thẳng√AB′ và BC ′ .
√
5a
a
3a
2a
A.
.
B. √ .
C.
.
D. √ .
3
2
5
5
Câu 3. Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s). Tính
quãng đường S mà chất điểm đó đi được sau 2 giây kể từ lúc bắt đầu chuyển động?
A. S = 12 (m).
B. S = 24 (m).
C. S = 20 (m).
D. S = 28 (m).
√
Câu 4. Cho hình phẳng (D) giới hạn bởi các đường y = x, y = x, x = 2 quay quanh trục hồnh. Tìm
thể tích V của khối trịn xoay tạo thành?
π
10π
.
D. V = .
A. V = π.
B. V = 1.
C. V =
3
3
Câu 5. Hàm
√ số nào sau√đây đồng biến trên R?
B. y = x2 .
A. y = x2 + x + 1 − x2 − x + 1.
C. y = x4 + 3x2 + 2.
D. y = tan x.
x
trên tập xác định của nó là
Câu 6. Giá trị nhỏ nhất của hàm số y = 2
x +1
1
1
A. min y = −1.
B. min y = .
C. min y = 0.
D. min y = − .
R
R
R
R
2
2
4
2
Câu 7. Tìm tất cả các giá trị của tham số m để hàm số y = (1 − m)x + 3x chỉ có cực tiểu mà khơng có
cực đại
A. m ≤ 1.
B. m < 1.
C. m ≥ 1.
D. m > 1.
Câu 8. Cho 0 < a , 1; 0 < x , 2. Đẳng thức nào sau đây là sai?
1
A. loga (x − 2)2 = 2loga (x − 2).
B. loga2 x = loga x.
2
C. loga x2 = 2loga x.
D. aloga x = x.
Câu 9. Gọi S (t) là diện tích hình phẳng giới hạn bởi các đường y =
t(t > 0). Tìm lim S (t).
t→+∞
1
A. − ln 2.
2
1
B. − ln 2 − .
2
1
; y = 0; x = 0; x =
(x + 1)(x + 2)2
1
C. ln 2 + .
2
1
D. ln 2 − .
2
x−1
y+2
z
Câu 10. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
=
= . Viết phương
1
−1
2
trình mặt phẳng (P) đi qua điểm M(2; 0; −1)và vng góc với d.
A. (P) : x − y + 2z = 0. B. (P) : x − 2y − 2 = 0. C. (P) : x − y − 2z = 0. D. (P) : x + y + 2z = 0.
√
Câu 11. Tìm tất cả các khoảng đồng biến của hàm số y = x − 2 x + 2017.
1
1
A. (0; 1).
B. (0; ).
C. (1; +∞) .
D. ( ; +∞).
4
4
√ sin 2x
Câu 12. Giá trị lớn nhất của hàm
trên R bằng?
√ số y = ( π)
A. 0.
B. π.
C. 1.
D. π.
Trang 1/5 Mã đề 001
Câu 13. Một hình trụ có diện tích xung quanh bằng 4π và có thiết diện qua trục của nó là một hình
vng. Tính thể tích của khối trụ.
A. 2π.
B. π .
C. 4π.
D. 3π.
R
Câu 14. Biết f (u)du = F(u) + C Mệnh đề nào dưới đây đúng?
R
R
1
A. f (2x − 1)dx = F(2x − 1) + C .
B. f (2x − 1)dx = F(2x − 1) + C.
2
R
R
C. f (2x − 1)dx = 2F(2x − 1) + C.
D. f (2x − 1)dx = 2F(x) − 1 + C.
Câu 15. Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − 1 = 0. Viết phương trình
mặt cầu (S ) có tâm I(2; 1; −1) và tiếp xúc với (P).
1
A. (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = 3.
B. (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = .
3
1
2
2
2
2
2
2
C. (S ) : (x + 2) + (y + 1) + (z − 1) = .
D. (S ) : (x + 2) + (y + 1) + (z − 1) = 3.
3
R
Câu 16. Tính nguyên hàm cos 3xdx.
1
1
A. 3 sin 3x + C.
B. −3 sin 3x + C.
C. sin 3x + C.
D. − sin 3x + C.
3
3
′ ′ ′ ′
Câu 17. Cho hình hộp ABCD.A B C D có đáy ABCD là hình bình hành. Hình chiếu vng góc của A′
lên mặt phẳng (ABCD)trùng với giao điểm của AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc giữa mặt
bên (ABB′ A′ ) và mặt đáy bằng 450 . Tính thể tích khối tứ diện ACB′ D′ theo a.
A. 30a3 .
B. 20a3 .
C. 60a3 .
D. 100a3 .
Câu 18. Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s).
Tính quãng đường S mà chất điểm đó đi được sau 2 giây kể từ lúc bắt đầu chuyển động.
A. S = 24 (m).
B. S = 12 (m).
C. S = 20 (m).
D. S = 28 (m).
Câu 19. Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3). Biết C là
một điểm trên mặt phẳng (P):x + z − 27 = 0 sao cho tồn tại các điểm B, D tương ứng thuộc các tia AM,
AN để tứ giác ABCD là hình thoi. Tọa độ điểm C là:
21
A. C(8; ; 19).
B. C(20; 15; 7).
C. C(6; 21; 21).
D. C(6; −17; 21).
2
Câu 20. Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1). Tìm tọa độ điểm E thuộc
trục tung sao cho tam giác MNEcân tại E.
A. (0; 6; 0).
B. (0; −2; 0).
C. (0; 2; 0).
D. (−2; 0; 0).
Câu 21. Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + 5 = 0. Giao điểm của (P)
và trục tung có tọa độ là
A. (0; −5; 0).
B. (0; 1; 0).
C. (0; 0; 5).
D. (0; 5; 0).
−u (2; −2; 1), kết luận nào sau đây đúng?
Câu 22. Trong
không gian với hệ tọa độ Oxyz cho →
√
−u | = 3.
−u | = 1.
−u | = 9.
−u | = 3.
B. |→
C. |→
D. |→
A. |→
√
′ ′ ′
′
Câu 23.
Cho
lăng
trụ
đều
ABC.A
B
C
có
đáy
bằng
a,
AA
=
4
3a. Thể tích khối
trụ đã cho là:
√ 3
√ lăng
3
3
3
A. 8 3a .
B. 3a .
C. a .
D. 3a .
Câu 24. Tính diện tích S của hình phẳng được giới hạn bởi các đường y = x2 , y = −x
5
1
1
1
A. S = .
B. S = .
C. S = .
D. S = .
6
6
2
3
Câu 25. Tập tất cả các giá trị của tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm
số y = 3x2 + log3 x + m là:
A. S = [ -ln3; +∞).
B. S = (−∞; 2).
C. S = [ 0; +∞).
D. S = (−∞; ln3).
Câu 26. Cho tam giác ABC vuông tại A, AB = a, BC = 2a. Tính thể tích khối nón nhận được khi quay
tam giác √
ABC quanh trục AB.
3
√
πa 3
A.
.
B. πa3 .
C. 3πa3 .
D. πa3 3.
3
Trang 2/5 Mã đề 001
Câu 27. Tìm tất cả các giá trị của tham số m để đồ thị hàm số y =
hai điểm cực trị nằm về phía bên phải trục tung?
A. m < 2.
B. m > 2.
C. m > 3.
1 3
1
x − (m − 2)x2 + (m − 2)x + m2 có
3
3
D. m > 3 hoặc m < 2.
Câu 28. Tính tổng tất cả các nghiệm của phương trình 6.22x − 13.6 x + 6.32x = 0
13
.
C. 1.
D. 0.
A. −6.
B.
6
Câu 29. Đồ thị như hình bên là đồ thị của hàm số nào?
2x − 1
2x + 2
−2x + 3
2x + 1
A. y =
.
B. y =
.
C. y =
.
D. y =
.
x−1
x+1
1−x
x+1
Câu 30. Cho hình chóp đều S .ABCD có cạnh đáy bằng a Gọi M, N lần lượt là trung điểm của SA và BC
o
Biết góc
√ giữa MN và mặt phẳng
√ (ABCD) bằng 60 . Tính sin của góc giữa MN và√mặt phẳng (S BD)
5
10
2
3
A.
.
B.
.
C. .
D.
.
5
5
5
4
Câu 31. Tập xác định của hàm số y = logπ (3 x − 3) là:
A. (1; +∞).
B. (3; +∞).
C. Đáp án khác.
D. [1; +∞).
Câu 32. Một bình đựng nước dạng hình nón (khơng có đáy), đựng đầy nước. Người ta thả vào đó một
khối cầu có đường kính bằng chiều cao của bình nước và đo được thể tích nước tràn ra ngồi là 18π
(dm3). Biết rằng khối cầu tiếp xúc với tất cả các đường sinh của hình nón và đúng một nửa khối cầu chìm
trong nước. Tính thể tích nước cịn lại trong bình.
A. 24π(dm3 ).
B. 6π(dm3 ).
C. 54π(dm3 ).
D. 12π(dm3 ).
Câu 33. Cho một hình trụ (T ) có chiều cao và bán kính đều bằng 3a Một hình vng ABCD có hai cạnh
AB, CD lần lượt là hai dây cung của hai đường tròn đáy, cạnh AD, BC khơng phải là đường sinh của
hình trụ (T ). Tính cạnh của hình vng này.
√
√
3a 10
D.
.
A. 6a.
B. 3a.
C. 3a 5.
2
Câu 34. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh
√ a. Hai mặt phẳng (S AB), (S AC) cùng
2
vng góc
với
mặt
phẳng
(ABC),
diện
tích
tam
giác
S
BC
là
a
3. Tính thể tích khối
√
√
√
√ chóp S .ABC.
3
3
3
3
a 15
a 5
a 15
a 15
A.
.
B.
.
C.
.
D.
.
8
3
4
16
Câu 35. Tính đạo hàm của hàm số y = 5 x+cos3x
A. y′ = (1 − 3 sin 3x)5 x+cos3x ln 5.
B. y′ = 5 x+cos3x ln 5 .
C. y′ = (1 + 3 sin 3x)5 x+cos3x ln 5 .
D. y′ = (1 − sin 3x)5 x+cos3x ln 5 .
Câu 36. Hình phẳng giới hạn bởi đồ thị hàm y = x2 +1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)
có diện tích bằng:
1
1
1
1
B. .
C. .
D. .
A. .
6
4
12
3
Câu 37. Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6). Gọi M là điểm nằm trên
đoạn AB sao cho MA = 2MB. Tìm tọa độ điểm M
4 10 16
5 11 17
7 10 31
2 7 21
A. M( ; ; ).
B. M( ; ; ).
C. M( ; ; ).
D. M( ; ; ).
3 3 3
3 3 3
3 3 6
3 3 3
Câu 38. Chọn mệnh đề đúng trong các mệnh đề sau:
R
R
(2x + 1)3
2
A. sin xdx = cos x + C .
B. (2x + 1) dx =
+C .
3
2x
R
R
e
C. e2x dx =
+ C.
D. 5 x dx =5 x + C .
2
Câu 39. Chọn mệnh đề đúng trong các mệnh đề sau:
R3
R2
R3
2
2
A. |x − 2x|dx = |x − 2x|dx − |x2 − 2x|dx.
1
1
2
Trang 3/5 Mã đề 001
B.
C.
R3
R2
R3
|x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx.
1
1
2
R3
R2
R3
|x2 − 2x|dx = (x2 − 2x)dx +
1
D.
R3
1
|x − 2x|dx = −
2
1
(x2 − 2x)dx.
2
R2
(x − 2x)dx +
2
1
R3
(x2 − 2x)dx.
2
Câu 40. Gọi l, h, R lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình nón (N). Diện tích
tồn phầnS tp của hình nón (N) bằng
A. S tp = πRl + 2πR2 .
B. S tp = 2πRl + 2πR2 . C. S tp = πRh + πR2 .
D. S tp = πRl + πR2 .
Câu 41. Tìm tất cả các giá trị của tham số m để hàm số y = mx3 + mx2 − x + 2 nghịch biến trên R.
A. −4 ≤ m ≤ −1.
B. m > −2.
C. −3 ≤ m ≤ 0.
D. m < 0.
Câu 42. Tính tích tất cả các nghiệm của phương trình (log2 (4x))2 + log2 (
A.
1
.
128
B.
1
.
64
C.
1
.
32
Câu 43. Hàm số nào trong các hàm số sau có đồ thị như hình vẽ bên.
A. y = −x4 + 2x2 .
B. y = x3 − 3x2
C. y = −2x4 + 4x2 .
.
x2
)=8
8
1
D. .
6
D. y = −x4 + 2x2 + 8.
Câu 44. Trong khơng gian với hệ trục tọa độ Oxyz, tìm bán kính của mặt cầu (S ) có phương trình
x2 + y2 + z2 − 4x − 6y + 2z − 1 = 0.
√
√
C. R = 3.
D. R = 14.
A. R = 4.
B. R = 15.
√
2x − x2 + 3
Câu 45. Đồ thị hàm số y =
có số đường tiệm cận đứng là:
x2 − 1
A. 0.
B. 2.
C. 1.
D. 3.
Câu 46. Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp
xúc với mặt phẳng (P) : 2x + y − 2z + 1 = 0.
A. (x − 1)2 + (y + 2)2 + (z − 4)2 = 1.
B. (x − 1)2 + (y − 2)2 + (z − 4)2 = 2.
C. (x − 1)2 + (y − 2)2 + (z − 4)2 = 1.
D. (x − 1)2 + (y − 2)2 + (z − 4)2 = 3.
√
Câu 47. Tính đạo hàm của hàm số y = log4 x2 − 1
x
x
x
1
A. y′ = 2
. B. y′ = 2
.
C. y′ =
. D. y′ = √
.
2
(x − 1)log4 e
(x − 1) ln 4
2(x − 1) ln 4
x2 − 1 ln 4
Câu 48. Chọn mệnh đề đúng trong các mệnh đề sau:
R
R
e2x
+C .
B. sin xdx = cos x + C.
A. e2x dx =
2
R
R
(2x + 1)3
C. 5 x dx =5 x + C.
D. (2x + 1)2 dx =
+ C.
3
Câu 49. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 3a; cạnh S A vng góc với mặt
phẳng (ABCD), S A = 2a. Tính thể tích khối chóp S .ABCD
A. 3a3 .
B. 4a3 .
C. 12a3 .
D. 6a3 .
Câu 50. Cho hình chóp đều S.ABCD có cạnh đáy bằng a và chiều cao bằng 2a, diện tích xung quanh
của hình nón đỉnh S và đáy là hình trịn nội tiếp tứ giác ABCD bằng
√
√
√
√
πa2 17
πa2 17
πa2 15
πa2 17
A.
.
B.
.
C.
.
D.
.
8
6
4
4
Trang 4/5 Mã đề 001
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 5/5 Mã đề 001