Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (453)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.71 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi
suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước đó.
Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết
rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền ra.
A. 212 triệu.
B. 216 triệu.
C. 210 triệu.
D. 220 triệu.
Câu 2. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 2.
B. 1.
C. 3.

D. 0.

Câu 3. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 4. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√



a3 5
a3 3
a3 5
a3 5
.
B.
.
C.
.
D.
.
A.
12
4
12
6
Câu 5. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 6. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −5.
B. Không tồn tại.
C. −3.

D. −7.

Câu 7. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách

giữa hai đường thẳng BD và S C bằng




a 6
a 6
a 6
A. a 6.
B.
.
C.
.
D.
.
6
3
2
1
2mx + 1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
Câu 8. Giá trị lớn nhất của hàm số y =
m−x
3
A. −5.
B. 1.
C. 0.
D. −2.
Câu 9. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 5 mặt.

B. 3 mặt.
C. 6 mặt.

D. 4 mặt.

Câu 10. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 27 lần.
B. Tăng gấp 9 lần.
C. Tăng gấp 3 lần.
D. Tăng gấp 18 lần.
9x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9x + 3
1
A. 2.
B. 1.
C. −1.
D. .
2
[ = 60◦ , S O
Câu 12. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S BC) bằng


2a 57
a 57
a 57

A.
.
B.
.
C. a 57.
D.
.
17
19
19
Câu 13. Tứ diện đều thuộc loại
A. {3; 4}.
B. {3; 3}.
C. {4; 3}.
D. {5; 3}.
Câu 11. [2-c] Cho hàm số f (x) =

Trang 1/10 Mã đề 1


[ = 60◦ , S A ⊥ (ABCD).
Câu 14. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh

√ S C là a. Thể tích khối chóp S .ABCD là
3
3

a3 2
a 3

a 2
3
D.
A.
.
B.
.
C. a 3.
.
6
12
4
Câu 15. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m ≥ 3.
C. m < 3.
D. m > 3.
cos n + sin n
Câu 16. Tính lim
n2 + 1
A. −∞.
B. 1.
C. +∞.
D. 0.

2
Câu 17.

√ Xác định phần ảo của số phức z = ( 2 + 3i)

B. −7.
C. 7.
D. −6 2.
A. 6 2.
Câu 18. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 5%.
B. 0, 8%.
C. 0, 7%.
D. 0, 6%.
5
Câu 19. Tính lim
n+3
A. 3.
B. 1.
C. 0.
D. 2.
Câu 20. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (II) và (III).

B. (I) và (III).

Câu 21.
√ Tìm giá trị lớn nhất của√hàm số y =

A. 3 2.
B. 2 3.



C. Cả ba mệnh đề.

x+3+ 6−x
C. 3.

D. (I) và (II).
D. 2 +


3.

Câu 22. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể
√ tích khối chóp S .ABCD là
3
10a
3
A. 40a3 .
B.
.
C. 10a3 .
D. 20a3 .
3
Câu 23. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD), S D = a 5. Thể tích khối

√ chóp S .ABCD là


3
3
3

a
5
a
15
a
6
A. a3 6.
B.
.
C.
.
D.
.
3
3
3

x2 + 3x + 5
Câu 24. Tính giới hạn lim
x→−∞
4x − 1
1
1

A. 0.
B. .
C. − .
D. 1.
4
4
Câu 25. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8 √
A. m = ± 2.
B. m = ±3.
C. m = ±1.
D. m = ± 3.
Câu 26. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
A. 2.
B.
.
C. 1.
2

D.

1
.
2
Trang 2/10 Mã đề 1


Câu 27. Thể tích của khối lăng√trụ tam giác đều có cạnh √
bằng 1 là:


3
3
3
3
A. .
B.
.
C.
.
D.
.
4
12
2
4
x−1
Câu 28. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
√ đều ABI có hai đỉnh A,√B thuộc (C), đoạn thẳng AB có độ dài bằng

A. 2 2.
B. 6.
C. 2.
D. 2 3.
x3 − 1
Câu 29. Tính lim
x→1 x − 1
A. 0.

B. −∞.
C. +∞.
D. 3.
x+2
Câu 30. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 2.
B. 1.
C. Vô số.
D. 3.
2
ln x
m
Câu 31. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 22.
B. S = 32.
C. S = 135.
D. S = 24.
2n + 1
Câu 32. Tìm giới hạn lim
n+1
A. 1.
B. 2.
C. 3.

D. 0.
2

Câu 33. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log3 2.
B. 1 − log2 3.
C. 3 − log2 3.

D. 2 − log2 3.
q
2
Câu 34. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 2].
C. m ∈ [0; 1].
D. m ∈ [0; 4].
1
Câu 35. Hàm số y = x + có giá trị cực đại là
x
A. 1.
B. 2.
C. −1.
D. −2.
Câu 36. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].

(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 3.

B. 1.

C. 2.
0

0

0

D. 4.

0

Câu 37. [3] Cho hình lập phương ABCD.A B C D có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng



a 3
2a 3
a 3
A.
D.
.
B.
.
C. a 3.

.
3
2
2
Câu 38. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trang 3/10 Mã đề 1


Trong hai câu trên
A. Cả hai câu trên sai.

B. Cả hai câu trên đúng. C. Chỉ có (I) đúng.

Câu 39. Khối đa diện đều loại {3; 5} có số cạnh
A. 20.
B. 30.

C. 12.

D. Chỉ có (II) đúng.
D. 8.


Câu 40. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 41. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
B. F(x) = G(x) trên khoảng (a; b).
C. Cả ba câu trên đều sai.
D. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
Câu 42. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

αβ
α β
C. aα bα = (ab)α .
D. aα+β = aα .aβ .
A. a = (a ) .
B. β = a β .
a
Câu 43. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e2 − 2; m = e−2 + 2.
B. M = e−2 + 2; m = 1.
C. M = e−2 + 1; m = 1.
D. M = e−2 − 2; m = 1.
Câu 44. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả

vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 18 tháng.
B. 17 tháng.
C. 15 tháng.
D. 16 tháng.
!2x−1
!2−x
3
3


Câu 45. Tập các số x thỏa mãn
5
5
A. (+∞; −∞).
B. (−∞; 1].
C. [3; +∞).
D. [1; +∞).
x2
Câu 46. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = , m = 0.
B. M = e, m = 0.
C. M = e, m = 1.
D. M = e, m = .
e
e
3

2
Câu 47. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax + bx + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 2.
B. y(−2) = −18.
C. y(−2) = 6.
D. y(−2) = 22.
x−2 x−1
x
x+1
Câu 48. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3).
B. [−3; +∞).
C. (−∞; −3].
D. (−3; +∞).
Câu 49. Khối đa diện đều loại {5; 3} có số mặt
A. 8.
B. 12.

C. 20.


D. 30.

Câu 50. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.

C. Khối bát diện đều.

D. Khối lập phương.

Câu 51. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − .
B. − 2 .
C. − .
e
e
2e

D. −e.
Trang 4/10 Mã đề 1


x−1 y z+1
= =

2
1

−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. −x + 6y + 4z + 5 = 0.
B. 2x + y − z = 0.
C. 2x − y + 2z − 1 = 0.
D. 10x − 7y + 13z + 3 = 0.

Câu 52. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình

Câu 53. [2] Số lượng của một lồi vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 15, 36.
B. 24.
C. 20.
D. 3, 55.

Câu 54. [1] Biết log6 a = 2 thì log6 a bằng
A. 36.
B. 108.
C. 6.
D. 4.

Câu 55. Thể tích của khối lập phương có cạnh bằng a 2 √


2a3 2
A. 2a3 2.
.

D. V = 2a3 .
B. V = a3 2.
C.
3
Câu 56. Cho hình chóp S .ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là√
3
3
4a 3
2a3 3
a3
a
.
B.
.
C.
.
D.
.
A.
3
3
3
6
Câu 57. Khối đa diện đều loại {3; 3} có số đỉnh
A. 3.
B. 4.
C. 2.
D. 5.

Câu 58. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng



a b2 + c2
b a2 + c2
abc b2 + c2
c a2 + b2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 59. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một mơn nằm cạnh nhau là
1
2
1
9
A.

.
B. .
C. .
D.
.
10
5
5
10
Câu 60. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 27.
B. 18.
C. 12.
D.
.
2
Câu 61.√Thể tích của tứ diện đều √
cạnh bằng a


a3 2
a3 2
a3 2
a3 2
A.
.
B.
.

C.
.
D.
.
6
12
2
4
Câu 62. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. (4; 6, 5].
C. [6, 5; +∞).
D. (−∞; 6, 5).



x=t




Câu 63. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).

9
9
A. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
B. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x + 3) + (y + 1) + (z + 3) = .
D. (x − 3) + (y − 1) + (z − 3) = .
4
4
Trang 5/10 Mã đề 1


Câu 64. [1] Đạo hàm của hàm số y = 2 x là
1
1
.
C. y0 = x
.
D. y0 = 2 x . ln 2.
A. y0 = 2 x . ln x.
B. y0 =

ln 2
2 . ln x
0
Câu 65. Cho hai đường thẳng phân biệt d và d đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có hai.
B. Có một hoặc hai.
C. Có một.
D. Khơng có.
Câu 66. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 3.

B. 1.

C. 2.

D. 0.

Câu 67. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Đường phân giác góc phần tư thứ nhất.
B. Trục ảo.
C. Hai đường phân giác y = x và y = −x của các góc tọa độ.
D. Trục thực.
4x + 1
bằng?
Câu 68. [1] Tính lim
x→−∞ x + 1

A. −1.
B. 2.

C. 4.

Câu 69. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 4 − 2 ln 2.
B. −2 + 2 ln 2.
C. 1.

D. −4.
D. e.

2
Câu 70. [2] Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2
A. m = ±1.
B. m = ± 2.
C. m = ± 3.
D. m = ±3.

Câu 71. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d song song với (P).
B. d nằm trên P hoặc d ⊥ P.
C. d ⊥ P.
D. d nằm trên P.
Z 2
ln(x + 1)
Câu 72. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b

x2
1
A. 1.
B. −3.
C. 3.
D. 0.
Câu 73. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≤ 0.
B. m > − .
C. m ≥ 0.
D. − < m < 0.
4
4
3
2
Câu 74. Tìm giá trị lớn chất của hàm số y = x − 2x − 4x + 1 trên đoạn [1; 3].
67
A. −4.
B. −7.
C. −2.
D.
.
27
Câu 75. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 6 cạnh, 4 mặt. B. 4 đỉnh, 8 cạnh, 4 mặt. C. 3 đỉnh, 3 cạnh, 3 mặt. D. 6 đỉnh, 6 cạnh, 4 mặt.
2n + 1
Câu 76. Tính giới hạn lim

3n + 2
3
2
1
A. .
B. .
C. 0.
D. .
2
3
2
0 0 0 0
Câu 77. Trong khơng gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A B C D , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 1).
B. A0 (−3; −3; −3).
C. A0 (−3; −3; 3).
D. A0 (−3; 3; 3).
Trang 6/10 Mã đề 1


Câu 78. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số nghịch biến trên khoảng (−2; 1).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
Câu 79. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?

A. 102.423.000.
B. 102.016.000.
C. 102.424.000.
D. 102.016.000.
1
Câu 80. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e − 1.
B. xy = e + 1.
C. xy0 = ey − 1.
D. xy0 = −ey + 1.
tan x + m
Câu 81. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (−∞; 0] ∪ (1; +∞). B. (1; +∞).
C. [0; +∞).
D. (−∞; −1) ∪ (1; +∞).
Câu 82. Trong các mệnh đề dưới đây, mệnh đề nào!sai?
un
A. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.

vn
!
un
= −∞.
B. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
vn
C. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
D. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
Câu 83. Phát biểu nào sau đây là sai?
A. lim un = c (un = c là hằng số).
C. lim qn = 0 (|q| > 1).

1
= 0.
n
1
D. lim k = 0.
n

B. lim

Câu 84. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a

a3 15
a3 15

a3
a3 5
.
B.
.
C.
.
D.
.
A.
25
5
3
25
Câu 85. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. Vơ nghiệm.
B. 1 nghiệm.
C. 2 nghiệm.
D. 3 nghiệm.
Câu 86. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 − 2e
1 + 2e
A. m =
.
B. m =
.
C. m =
.
4 − 2e

4e + 2
4e + 2
Câu 87. Dãy số nào có giới hạn bằng 0?!
n
−2
2
A. un = n − 4n.
B. un =
.
3

!n
6
C. un =
.
5

D. m =

1 − 2e
.
4 − 2e

n3 − 3n
D. un =
.
n+1

Câu 88.
đề nào sai? Z

Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh Z
A.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
B.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
Z
Z
Z
Z
C.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
D.
f (x)g(x)dx =
f (x)dx g(x)dx.
Trang 7/10 Mã đề 1


Câu 89. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
A. 25.
B. 5.
C. .
5



D. 5.

Câu 90. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; 8).
B. A(4; −8).
C. A(−4; −8)(.
D. A(4; 8).
Câu 91. [12214d] Với giá trị nào của m thì phương trình
A. 2 < m ≤ 3.

B. 2 ≤ m ≤ 3.

1
3|x−2|

= m − 2 có nghiệm

C. 0 < m ≤ 1.

D. 0 ≤ m ≤ 1.

Câu 92. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 1.
B. 7.
C. 2.
D. 3.
2x + 1
Câu 93. Tính giới hạn lim
x→+∞ x + 1
1

A. −1.
B. 2.
C. 1.
D. .
2
Câu 94. Khối đa diện đều loại {3; 4} có số cạnh
A. 6.
B. 8.

C. 12.

D. 10.

Câu 95. Khối lập phương thuộc loại
A. {5; 3}.
B. {4; 3}.

C. {3; 3}.

D. {3; 4}.

Câu 96. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−1; 1).
B. (−∞; 1).
C. (−∞; −1).

D. (1; +∞).

Câu 97. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1

1
1
1
A. m ≥ .
B. m > .
C. m ≤ .
D. m < .
4
4
4
4
d = 120◦ .
Câu 98. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A.
.
B. 4a.
C. 3a.
D. 2a.
2
1 − n2
Câu 99. [1] Tính lim 2
bằng?
2n + 1
1
1
1
A. − .
B. .

C. .
D. 0.
2
3
2


Câu 100. Phần thực và√phần ảo của số phức
z
=
2

1

3i lần lượt√l


A. Phần thực là 1√− 2, phần ảo là − √3.
B. Phần thực là √2, phần ảo là 1 − √3.
D. Phần thực là 2 − 1, phần ảo là 3.
C. Phần thực là 2 − 1, phần ảo là − 3.
Câu 101. Cho hàm số y = x3 − 2x2 + x +!1. Mệnh đề nào dưới đây đúng?
1
A. Hàm số đồng biến trên khoảng ; 1 .
B. Hàm số nghịch biến trên khoảng (1; +∞).
3
!
!
1
1

C. Hàm số nghịch biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng −∞; .
3
3
Câu 102. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối bát diện đều.
B. Khối lập phương.
C. Khối tứ diện.
D. Khối lăng trụ tam giác.
Câu 103. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là −4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là −3, phần ảo là −4.
D. Phần thực là −3, phần ảo là 4.
Trang 8/10 Mã đề 1


!4x
!2−x
2
3
Câu 104. Tập các số x thỏa mãn


3 #
2
!
#
"
!

"
2
2
2
2
B. −∞; .
C. −∞; .
D.
; +∞ .
A. − ; +∞ .
3
3
5
5

Câu 105. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả
bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 64.
C. 62.
D. Vô số.
1
Câu 106. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 1.
B. 4.
C. 2.
D. 3.
Câu 107. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam

giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của hình chóp S .ABCD với√mặt phẳng (AIC) có diện√tích là

2
a 5
11a2
a2 7
a2 2
A.
.
B.
.
C.
.
D.
.
16
32
8
4
Câu 108. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. −2.
B. 2.
C. − .
D. .
2
2

Câu 109. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −8.
B. x = −2.
C. x = −5.
D. x = 0.
Câu 110. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là 1.
B. Phần thực là −1, phần ảo là 4.
C. Phần thực là 4, phần ảo là −1.
D. Phần thực là −1, phần ảo là −4.
Câu 111. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 2; −1).
B. ~u = (2; 1; 6).
C. ~u = (1; 0; 2).
D. ~u = (3; 4; −4).
 π
Câu 112. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2



2 π4
1 π3
3 π6
A.
e .
B. e .
C.
e .
D. 1.
2
2
2
Câu 113. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 2.
C. 1.
D. 3.
Câu 114. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [−1; 2).
B. (1; 2).
C. (−∞; +∞).

D. [1; 2].

Câu 115. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
8a
2a
5a

a
A.
.
B.
.
C.
.
D. .
9
9
9
9
Câu 116. Khối đa diện đều loại {4; 3} có số cạnh
A. 10.
B. 30.
C. 12.
D. 20.
Câu 117. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 1.
B. Vô số.
C. 2.
D. 3.
Trang 9/10 Mã đề 1


x+1
Câu 118. Tính lim
bằng
x→+∞ 4x + 3

1
1
A. .
B. .
C. 1.
D. 3.
3
4
Câu 119. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tứ giác.
B. Hai hình chóp tam giác.
C. Một hình chóp tam giác và một hình chóp tứ giác.
D. Một hình chóp tứ giác và một hình chóp ngũ giác.
Câu 120. Khối đa diện đều loại {3; 4} có số đỉnh
A. 4.
B. 8.

C. 6.

D. 10.

Câu 121. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 122. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + 2 sin 2x.
B. 1 − sin 2x.

C. 1 + 2 sin 2x.

D. −1 + sin x cos x.

Câu 123. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 120 cm2 .
C. 160 cm2 .
D. 1200 cm2 .
Câu 124. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối lập phương.

C. Khối 12 mặt đều.

D. Khối bát diện đều.
d = 300 .
Câu 125. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V √của khối lăng trụ đã cho.


3a3 3
a3 3
3
3
.
C. V = 3a 3.
.
D. V =

A. V = 6a .
B. V =
2
2
Câu 126. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
ab
1
A. √
.
B. √
.
C. 2
.
D. √
.
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
Câu 127. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = S h.
C. V = 3S h.
D. V = S h.

2
3
Câu 128. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba mặt.
B. Năm mặt.
C. Bốn mặt.
D. Hai mặt.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥
Câu 129. Cho hình chóp S .ABC có BAC
(ABC). Thể tích khối chóp S .ABC√là


3
3
3

a
2
a
3
a
3
A. 2a2 2.
B.
.
C.
.
D.
.

24
24
12
Câu 130. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim− f (x) = f (b).
B. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim− f (x) = f (a) và lim+ f (x) = f (b).
D. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a

x→b

x→a

x→b

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1


C

3.

4. A

5. A
7.

D

2.

1. A

6.
B

B
C

8.

9.

D

10. A

11.


B

12.

13.

B

14.

D

15.

B

16.

D

17. A

18.

19.

C

21. A

23.

D

20.

D

22.

D
C

26. A

27.

D

28.

29.

D

30. A

B

32.


33.

D

34. A

35.

D

36. A

37. A
39.

C

24.

25. A

31.

B

38.

D
B


B

40.

B

41.

D

42.

43.

D

44.

45.

D

46.

C
B
D
B


47.

B

48.

49.

B

50.

D

52.

D

53. A

54.

D

55. A

56.

51.


57.

C

D
B

67.

60.

B

62.

B

64.

63. A
65.

B

58. A

B

59.
61.


C

B
C
1

D

66.

C

68.

C


69.

D

70. A

71.

B

72.


73.

B

74.

75. A
77.

D

79.
81.

B
C

76.

B

78.

B

80.

C

C


82.

B

83.

C

84. A

85.

C

86.

D
B

88.

D

89. A

90.

D


91. A

92.

C
C

87.

B

93.

B

94.

95.

B

96. A

97.

C

98. A

99. A

101.

C

103.

D

100.

C

102.

C

104. A

105.

C

106. A

107.

C

108. A


109. A
111.
113.

C

112. A

B

115. A
117.
119.

C

114.

C

116.

C

118.

B

120.


121.

C

122. A

123.

C

124. A

125.

D

126. A

127.

D

128. A

129.

C

110.


130. A

B

2

B
C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×