Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (573)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (148.86 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −3.
B. −6.
C. 0.
D. 3.
Câu 2. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 + ln x.
B. y0 = ln x − 1.
x−2
Câu 3. Tính lim
x→+∞ x + 3
A. 2.
B. 1.

C. y0 = x + ln x.

D. y0 = 1 − ln x.

2
C. − .
D. −3.
3


Câu 4. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 7.
B. 3.
C. 2.
D. 1.
Câu 5. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá trị
của hàm số tại x = −2.
A. y(−2) = 2.
B. y(−2) = 6.
C. y(−2) = −18.
D. y(−2) = 22.

Câu 6. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh
đề nào dưới đây đúng?
!
!
1
1
B. Hàm số đồng biến trên khoảng ; 1 .
A. Hàm số nghịch biến trên khoảng ; 1 .
3
3
!
1
C. Hàm số nghịch biến trên khoảng −∞; .
D. Hàm số nghịch biến trên khoảng (1; +∞).
3
Câu 7. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường thẳng
BB0 và AC 0 bằng
1

1
ab
ab
.
C. √
A. √
.
B. 2
.
D. √
.
2
a +b
2 a2 + b2
a2 + b2
a2 + b2
d = 300 .
Câu 8. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
0
Độ dài cạnh bên CC = 3a. Thể tích V của khối lăng trụ đã cho. √


a3 3
3a3 3
3
3
A. V = 3a 3.
B. V = 6a .
C. V =
.

D. V =
.
2
2
Câu 9. [4-1246d] Trong tất cả √
các số phức z thỏa mãn |z √
− i| = 1. Tìm giá trị lớn nhất của |z|
A. 1.
B. 5.
C. 3.
D. 2.
Câu 10. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 6).
B. (2; 4; 4).
C. (1; 3; 2).
D. (2; 4; 3).
Câu 11. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −9.
B. −5.
C. −12.
D. −15.
Câu 12. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 13 năm.
C. 11 năm.

D. 12 năm.
Câu 13. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 10 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Trang 1/10 Mã đề 1


Câu 14. Giá trị của lim (3x2 − 2x + 1)
x→1

A. 2.

B. +∞.

C. 1.

D. 3.

Câu 15. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là√
3
3
4a 3
2a3 3
a3
a
.

B.
.
C.
.
D.
.
A.
3
3
3
6
Câu 16. [1] Tập
! xác định của hàm số y! = log3 (2x + 1) là
!
!
1
1
1
1
A. −∞; − .
B.
; +∞ .
C. − ; +∞ .
D. −∞; .
2
2
2
2

Câu 17. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy

là 300 . Thể
theo a.


√ tích khối chóp S .ABC3 √
3
a 2
a3 6
a3 6
a 6
.
B.
.
C.
.
D.
.
A.
6
6
36
18
Câu 18. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (2; 2).
B. (−1; −7).
C. (1; −3).
D. (0; −2).
Câu 19. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e−2 + 2; m = 1.

C. M = e2 − 2; m = e−2 + 2.
D. M = e−2 + 1; m = 1.
Câu 20. Khối đa diện đều loại {4; 3} có số cạnh
A. 30.
B. 10.

C. 12.

D. 20.

Câu 21. [1] Đạo hàm của làm số y = log x là
1
1
ln 10
1
A. y0 =
.
B.
.
C. y0 =
.
D. y0 = .
x ln 10
10 ln x
x
x
Câu 22.
Z Trong cácα+1khẳng định sau, khẳng định nào sai? Z
x
A.

xα dx =
+ C, C là hằng số.
B.
dx = x + C, C là hằng số.
α+1
Z
Z
1
C.
0dx = C, C là hằng số.
D.
dx = ln |x| + C, C là hằng số.
x
1
Câu 23. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 3).
B. (−∞; 1) và (3; +∞). C. (1; +∞).
D. (1; 3).
2

Câu 24. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 5.
B. 7.
C. 8.

D. 6.

Câu 25. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là

1
2
1
9
A.
.
B. .
C. .
D.
.
10
5
5
10

Câu 26. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
A. 5.
B. 5.
C. .
D. 25.
5
Câu 27. Biểu thức nào sau đây khơng có nghĩa


−3
A. 0−1 .
B. (−1)−1 .
C. (− 2)0 .

D.
−1.
1 − 2n
Câu 28. [1] Tính lim
bằng?
3n + 1
2
1
2
A. .
B. 1.
C. .
D. − .
3
3
3
Trang 2/10 Mã đề 1


Câu 29. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 3 mặt.
C. 4 mặt.
D. 6 mặt.
Câu 30. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 3 mặt.
C. 6 mặt.

D. 9 mặt.


Câu 31. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 220 triệu.
B. 210 triệu.
C. 212 triệu.
D. 216 triệu.
Câu 32. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −4.
B. 4.
C. −2.
D. 2.
mx − 4
Câu 33. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 45.
B. 67.
C. 26.
D. 34.
Câu 34. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S√B bằng
a
a
a 3
.
B. a.

C. .
D. .
A.
2
2
3
n−1
Câu 35. Tính lim 2
n +2
A. 0.
B. 1.
C. 2.
D. 3.
Câu 36. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng



a 2
a 2
B.
D.
A. 2a 2.
.
C. a 2.
.
2
4
Câu 37. Thập nhị diện đều (12 mặt đều) thuộc loại

A. {4; 3}.
B. {5; 3}.
C. {3; 4}.
D. {3; 3}.
Câu 38. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim− f (x) = f (b).
B. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a

x→b

x→a

x→b

C. lim− f (x) = f (a) và lim− f (x) = f (b).

x→a

x→b

x→a

x→b

D. lim− f (x) = f (a) và lim+ f (x) = f (b).

Câu 39. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 4}.

B. {4; 3}.
C. {3; 5}.

D. {5; 3}.

Câu 40. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 3).
B. A0 (−3; −3; −3).
C. A0 (−3; 3; 1).
D. A0 (−3; −3; 3).
q
Câu 41. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 1].
C. m ∈ [0; 2].
D. m ∈ [0; 4].
Câu 42. Mệnh đề nào sau đây sai?
A. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
!0
Z
B.
f (x)dx = f (x).
Trang 3/10 Mã đề 1


C. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).

Z
D. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

Câu 43. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
.
C. .
D. 5.
A. 7.
B.
2
2
Câu 44. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 45. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 4.
x2 − 5x + 6
Câu 46. Tính giới hạn lim
x→2
x−2
A. 5.
B. 1.


C. 8.

D. 6.

C. 0.

D. −1.

Câu 47. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. .
B. .
C. 6.
D. 9.
2
2
Câu 48. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −2 ≤ m ≤ 2.
B. m ≥ 3.
C. −3 ≤ m ≤ 3.
D. m ≤ 3.
Câu 49. [1] Giá trị của biểu thức 9log3 12 bằng
A. 144.
B. 2.

C. 4.

Câu 50. Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?

A. Bát diện đều.
B. Thập nhị diện đều. C. Tứ diện đều.

D. 24.
D. Nhị thập diện đều.

Câu 51. Giá trị của lim(2x2 − 3x + 1) là
A. +∞.

x→1

B. 0.

C. 1.

D. 2.

x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác đều ABI có hai đỉnh A, √
B thuộc (C), đoạn thẳng AB
√ có độ dài bằng

A. 2.
B. 2 3.
C. 2 2.
D. 6.

Câu 52. [3-1214d] Cho hàm số y =


Câu 53. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
A. y = log π4 x.
B. y = log 14 x.

D. y = log √2 x.
C. y = loga x trong đó a = 3 − 2.
1
Câu 54. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2) ∪ (−1; +∞). B. −2 ≤ m ≤ −1.
C. −2 < m < −1.
D. (−∞; −2] ∪ [−1; +∞).
Câu 55. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng số cạnh của khối chóp.
B. Số mặt của khối chóp bằng 2n+1.
C. Số cạnh của khối chóp bằng 2n.
D. Số đỉnh của khối chóp bằng 2n + 1.

Câu 56. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 64.
C. Vô số.
D. 63.
Trang 4/10 Mã đề 1


3

2
Câu 57. Giá
√ x − 3x − 3x + 2

√ trị cực đại của hàm số y =
B. −3 − 4 2.
C. −3 + 4 2.
A. 3 + 4 2.


D. 3 − 4 2.

Câu 58. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
 π
Câu 59. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


2 π4
1 π3
3 π6
A.
e .
B. e .
C.
e .

D. 1.
2
2
2
Câu 60. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 9 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 3 lần.
D. Tăng gấp 27 lần.
Câu 61. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
23
1728
1079
1637
.
B.
.
C.
.
D.
.
A.
4913
68
4913
4913
Câu 62. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 5.
B. 0.
C. 9.
D. 7.
Câu 63. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều sai.
B. Chỉ có (I) đúng.

C. Cả hai đều đúng.

D. Chỉ có (II) đúng.

Câu 64. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
!
5 − 12x
= 2 có bao nhiêu nghiệm thực?
Câu 65. [2] Phương trình log x 4 log2
12x − 8
A. 2.
B. 1.
C. 3.
D. Vô nghiệm.
Câu 66. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của


A. Tăng lên (n − 1) lần. B. Khơng thay đổi.
C. Tăng lên n lần.
D. Giảm đi n lần.

Câu 67. Thể tích của khối lập phương có cạnh bằng a 2



2a3 2
3
3
3
A. V = 2a .
B. 2a 2.
C. V = a 2.
D.
.
3
1 − n2
Câu 68. [1] Tính lim 2
bằng?
2n + 1
1
1
1
A. .
B. 0.
C. − .
D. .

3
2
2
Câu 69. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
A.
.
B.
.
C.
.
D. a 6.
3
2
6
Trang 5/10 Mã đề 1


d = 60◦ . Đường chéo
Câu 70. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0






2a3 6
a3 6
4a3 6
3
.
B.
.
C. a 6.
D.
.
A.
3
3
3
Câu 71. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là −4.
B. Phần thực là 4, phần ảo là −1.
C. Phần thực là −1, phần ảo là 4.
D. Phần thực là 4, phần ảo là 1.
[ = 60◦ , S A ⊥ (ABCD).
Câu 72. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối
√chóp S .ABCD là

3
3


a
2
a
2
a3 3
3
A. a 3.
B.
.
C.
.
D.
.
4
12
6
log(mx)
Câu 73. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m = 4.
B. m < 0.
C. m < 0 ∨ m > 4.
D. m ≤ 0.
Câu 74. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối 12 mặt đều.

C. Khối bát diện đều.


D. Khối tứ diện đều.

Câu 75. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể tích khối chóp S .ABC là √


a3
a3 3
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
4
4
8
12
Câu 76. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −e2 .
B. −2e2 .
C. 2e2 .
D. 2e4 .
q
2

Câu 77. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 1].
C. m ∈ [0; 4].
D. m ∈ [0; 2].
Câu 78. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 16 tháng.
B. 18 tháng.
C. 17 tháng.
D. 15 tháng.
Câu 79. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 10 mặt.
B. 8 mặt.
C. 6 mặt.

D. 4 mặt.

Câu 80. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
C. 3.
D. .
A. 1.

B. .
2
2
Câu 81. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 3, 55.
B. 24.
C. 15, 36.
D. 20.

2
3
Câu 82. [2] Phương trình log4 (x + 1) + 2 = log √2 4 − x + log8 (4 + x) có tất cả bao nhiêu nghiệm?
A. Vơ nghiệm.
B. 3 nghiệm.
C. 1 nghiệm.
D. 2 nghiệm.
d = 30◦ , biết S BC là tam giác đều
Câu 83. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.

B.
.
C.
.
D.
.
26
13
9
16
Trang 6/10 Mã đề 1


Câu 84. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp tứ giác.
B. Hai khối chóp tam giác.
C. Một khối chóp tam giác, một khối chóp ngữ giác.
D. Hai khối chóp tứ giác.
Câu 85.
đề nào sau đây sai?
Z [1233d-2] Mệnh
Z
A.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
B.
[ f (x) + g(x)]dx =

f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
Z
C.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
D.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Câu 86. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
B. m < .
C. m ≥ .
D. m > .
A. m ≤ .
4
4
4
4
Câu 87. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 3 mặt.
C. 5 mặt.
D. 4 mặt.
Câu 88. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm

mới rút lãi thì người đó thu được số tiền lãi là
A. 70, 128 triệu đồng. B. 3, 5 triệu đồng.
C. 20, 128 triệu đồng. D. 50, 7 triệu đồng.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 89. [3-12217d] Cho hàm số y = ln
x
+
1
A. xy0 = −ey − 1.
B. xy0 = ey − 1.
C. xy0 = −ey + 1.
D. xy0 = ey + 1.
Câu 90. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 91cm3 .
B. 48cm3 .
C. 64cm3 .
D. 84cm3 .
Câu 91. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác S AB đều và nằm trong mặt
Thể tích khối chóp
√ phẳng vng góc với 3(ABCD).

√ S .ABCD là
3
3

a
2

a
3
a
3
A. a3 3.
B.
.
C.
.
D.
.
2
4
2
Câu 92. Cho z là√nghiệm của phương trình x2 + x + 1 = 0. Tính P =√z4 + 2z3 − z
−1 + i 3
−1 − i 3
A. P =
.
B. P = 2.
C. P =
.
D. P = 2i.
2
2
7n2 − 2n3 + 1
Câu 93. Tính lim 3
3n + 2n2 + 1
2
7

A. 0.
B. - .
C. .
D. 1.
3
3
2

Câu 94. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log3 2.
B. 1 − log2 3.
C. 2 − log2 3.
Câu 95. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim
A. −∞.

B. +∞.

C. 0.

D. 3 − log2 3.
un
bằng
vn
D. 1.

Câu 96. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.

Trang 7/10 Mã đề 1


Câu 97. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. Không tồn tại.
B. −7.
C. −3.

D. −5.
! x3 −3mx2 +m
1
Câu 98. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m , 0.
B. m ∈ R.
C. m ∈ (0; +∞).
D. m = 0.
Câu 99. Khối đa diện đều loại {3; 4} có số mặt
A. 12.
B. 10.
C. 6.
log 2x

Câu 100. [1229d] Đạo hàm của hàm số y =
x2
1 − 4 ln 2x
1 − 2 ln 2x
1

.
B. y0 =
.
C. y0 = 3
.
A. y0 = 3
3
2x ln 10
2x ln 10
x ln 10

D. 8.

D. y0 =

1 − 2 log 2x
.
x3

Câu 101. Cho số phức z thỏa mãn |z√+ 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.

A. |z| = 10.
B. |z| = 17.
C. |z| = 17.
D. |z| = 10.
Câu 102. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?

A. 2, 22 triệu đồng.
B. 2, 20 triệu đồng.
C. 3, 03 triệu đồng.
D. 2, 25 triệu đồng.
Câu 103. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối bát diện đều.

C. Khối tứ diện đều.

Câu 104.
√ trụ tam giác đều có cạnh√bằng 1 là:
√ Thể tích của khối lăng
3
3
3
.
B.
.
C.
.
A.
2
12
4
4x + 1
Câu 105. [1] Tính lim
bằng?
x→−∞ x + 1
A. −4.

B. 4.
C. −1.

D. Khối 12 mặt đều.

D.

3
.
4

D. 2.

3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng √
a 2
a
2a
a
A.
.
B. .
C.
.
D. .
3
3

3
4
Câu 107. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −8.
B. x = −2.
C. x = 0.
D. x = −5.
Câu 106. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =

Câu 108. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (0; 2).
B. (−∞; 1).
C. (2; +∞).

D. R.

Câu 109. Khối chóp ngũ giác có số cạnh là
A. 10 cạnh.
B. 9 cạnh.

C. 11 cạnh.

D. 12 cạnh.

Câu 110. Khối đa diện đều loại {3; 4} có số cạnh
A. 12.
B. 6.

C. 8.


D. 10.

Câu 111. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối 12 mặt đều.

C. Khối tứ diện đều.

D. Khối bát diện đều.
Trang 8/10 Mã đề 1


Câu 112.
Các khẳng định nàoZsau đây là sai?
Z
f (x)dx = F(x) +C ⇒

A.
Z
C.

f (x)dx = F(x) + C ⇒

Câu 113. Tính lim
x→5

Z

f (u)dx = F(u) +C. B.


Z

f (t)dt = F(t) + C. D.

x2 − 12x + 35
25 − 5x
B. +∞.

Z

!0
f (x)dx = f (x).
Z
k f (x)dx = k
f (x)dx, k là hằng số.

2
2
.
D. − .
5
5
Câu 114. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. −2 + 2 ln 2.
B. 1.
C. 4 − 2 ln 2.
D. e.
1
Câu 115. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3

A. 0 < m ≤ 1.
B. 2 ≤ m ≤ 3.
C. 2 < m ≤ 3.
D. 0 ≤ m ≤ 1.
A. −∞.

C.

Câu 116. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 3.
B. 2.
C. 1.
2
x −9
Câu 117. Tính lim
x→3 x − 3
A. −3.
B. 3.
C. +∞.

D. 5.

D. 6.

Câu 118. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng



a 3

a 3
2a 3
A.
D.
.
B.
.
C. a 3.
.
3
2
2
Câu 119. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. 3n3 lần.
B. n lần.
C. n2 lần.
D. n3 lần.
Câu 120. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; 8).
B. A(4; 8).
C. A(−4; −8)(.
D. A(4; −8).
Câu 121. ZCho hai hàmZy = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
f (x)dx =

A. Nếu
Z

g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z

Z
0
C. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
0
D. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
B. Nếu

f (x)dx =

g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z

8
Câu 122. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 82.
B. 81.
C. 64.
D. 96.
Câu 123.
√cạnh bằng a

√ Thể tích của tứ diện đều
3

3
a 2
a 2
a3 2
.
B.
.
C.
.
A.
4
6
12
Câu 124. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. −7, 2.
B. 72.
C. 0, 8.
Câu 125. Khối đa diện đều loại {3; 5} có số cạnh
A. 12.
B. 20.

C. 30.


a3 2
D.
.
2
D. 7, 2.
D. 8.


Câu 126. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
Trang 9/10 Mã đề 1


(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (II) và (III).

B. (I) và (II).
2n + 1
Câu 127. Tìm giới hạn lim
n+1
A. 3.
B. 2.
Câu 128. Khối đa diện đều loại {3; 5} có số đỉnh
A. 8.
B. 30.

C. (I) và (III).

D. Cả ba mệnh đề.

C. 1.

D. 0.


C. 12.

D. 20.

Câu 129. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn
nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ.
100.(1, 01)3
(1, 01)3
triệu.
B. m =
triệu.
A. m =
3
(1, 01)3 − 1
120.(1, 12)3
100.1, 03
C. m =
triệu.
D. m =
triệu.
3
(1, 12) − 1
3

x2 + 3x + 5
Câu 130. Tính giới hạn lim
x→−∞

4x − 1
1
1
C. 0.
D. .
A. 1.
B. − .
4
4
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
3.

2. A
B

4.
C

5.

6. A


7.

D

9.

D

11.

8.
12.

13.

B

14. A

15.

B

16.
20.

21. A

22. A
B


24.

25.

D

27. A
29.

C
D
C
B

26.

D

28.

D

31.

B

32.

D


18.

D

19. A
23.

D

10. A

C

17.

C

C

33.

C

34.

B

35. A


36.

B

37.

D
B

38. A

39.

40. A

41. A

42. A

43.

C
C

44.

D

45.


46.

D

47. A

48.

C

49. A

C

50.

B

51.

52.

B

53.

54.

B


55.

C

57.

C

56. A
58.

D

59. A

60.

D

61. A

62.
64. A
68.

D

63.

C


66.

B

D

65.

B

67.

B

69.

C
1

D

C


70.
72.

71.


C
B

B

73. A

74. A

75.

76. A

77. A

78. A

79.

C
C

80.

D

81.

82.


D

83.

84. A

85. A

86. A

87.

88.

C

89.

90.

C

91.

92.

B

93.
C


94.

C

B
D
B
D
B
C

95.

96. A

97. A

98.

D
C

100.
102. A

99.

D


101.

D

103. A

104.

C

105.

106.

C

107. A

B

108. A

109. A

110. A

111.

C


112. A

113.

C

115.

C

114.
116.

D
B

118. A

117.

D

119.

D

120.

B


121.

122.

B

123.

C

125.

C

124. A
126.

B

128.
130.

C
B

2

B

127.


B

129.

B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×