Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg (727)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (155.59 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

1
Câu 1. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
π
(−∞; +∞)
A. m ∈ R.
B. m ∈ (0; +∞).
C. m , 0.

! x3 −3mx2 +m
nghịch biến trên khoảng
D. m = 0.

Câu 2. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một nguyên
hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
B. Cả ba câu trên đều sai.
C. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
D. F(x) = G(x) trên khoảng (a; b).
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử của


Câu 3. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
S bằng
A. 5.
B. 2.
C. 4.
D. 3.
9x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
Câu 4. [2-c] Cho hàm số f (x) = x
9 +3
1
A. .
B. 1.
C. 2.
D. −1.
2
1
Câu 5. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 ≤ m ≤ −1.
B. (−∞; −2) ∪ (−1; +∞). C. −2 < m < −1.
D. (−∞; −2] ∪ [−1; +∞).


4n2 + 1 − n + 2
Câu 6. Tính lim
bằng
2n − 3

3
A. 1.
B. .
C. +∞.
D. 2.
2
Câu 7. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 3}.
C. {3; 4}.
D. {5; 3}.

Câu 8. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 62.
C. Vô số.
D. 64.
4x + 1
Câu 9. [1] Tính lim
bằng?
x→−∞ x + 1
A. 4.
B. −1.
C. 2.
D. −4.
Câu 10. Khối đa diện đều loại {3; 3} có số cạnh
A. 8.
B. 5.


C. 6.

D. 4.

0 0 0 0
0
Câu 11.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 3
a 6
A.
.
B.
.
C.
.
D.
.
7
3
2
2
Z 3
x
a
a
Câu 12. Cho I =

dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 4.
B. P = 16.
C. P = −2.
D. P = 28.

Trang 1/10 Mã đề 1


!2x−1
!2−x
3
3
Câu 13. Tập các số x thỏa mãn


5
5
A. [3; +∞).
B. [1; +∞).
C. (+∞; −∞).

D. (−∞; 1].

Câu 14. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu

A. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 15. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 4.

B. 1.

C. 2.

1
3|x−1|

= 3m − 2 có nghiệm duy

D. 3.

Câu 16. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. 3.
C. 1.
D. Vô nghiệm.

Câu 17. [1] Biết log6 a = 2 thì log6 a bằng
A. 4.
B. 36.
C. 6.
D. 108.

Câu 18. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 8.
B. 6.
C. 4.
D. 3.
Câu 19. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 − ln x.
B. y0 = ln x − 1.

C. y0 = x + ln x.

Câu 20. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (0; 2).
B. (−∞; 1).
C. R.

D. y0 = 1 + ln x.
D. (2; +∞).

Câu 21. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng 2n + 1.
B. Số cạnh của khối chóp bằng 2n.
C. Số mặt của khối chóp bằng số cạnh của khối chóp.
D. Số mặt của khối chóp bằng 2n+1.
 π π
Câu 22. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 7.
B. −1.

C. 3.
D. 1.
Câu 23. [1] Đạo hàm của làm số y = log x là
1
1
A. y0 =
.
B. y0 = .
x ln 10
x

C. y0 =

ln 10
.
x

D.

1
.
10 ln x

Câu 24. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≥ 3.
B. m ≤ 3.
C. −2 ≤ m ≤ 2.
D. −3 ≤ m ≤ 3.
Câu 25. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng

(S AB)
8a
a
2a
5a
A.
.
B. .
C.
.
D.
.
9
9
9
9
1 − 2n
Câu 26. [1] Tính lim
bằng?
3n + 1
2
1
2
A. .
B. .
C. − .
D. 1.
3
3
3

Trang 2/10 Mã đề 1


Câu 27. Phần thực√và phần ảo của số phức
√ z=
A. Phần thực là √2 − 1, phần ảo là −√ 3.
C. Phần thực là 2 − 1, phần ảo là 3.




2 − 1 − 3i lần lượt √l

B. Phần thực là 2, √
phần ảo là 1 − √
3.
D. Phần thực là 1 − 2, phần ảo là − 3.

Câu 28. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có vơ số.
B. Có một.
C. Khơng có.
D. Có hai.
Câu 29. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 10.

C. 6.


D. 12.

log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0 ∨ m = 4.
D. m ≤ 0.

Câu 30. [3-1226d] Tìm tham số thực m để phương trình
A. m < 0.

B. m < 0 ∨ m > 4.

Câu 31. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
23
5
13
9
A. −
.
B. − .
C.
.
D.
.
100
16
100
25

Câu 32. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



3
2a 3
4a3 3
5a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
2
Câu 33.
√ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ
B. 2.
C. 2.
D. 1.

A. 10.
Câu 34. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 220 triệu.
B. 216 triệu.
C. 210 triệu.
D. 212 triệu.
Câu 35. [1] Tính lim
A. 0.

1 − n2
bằng?
2n2 + 1
1
B. .
2

1
C. − .
2

D.

1
.
3


 π
Câu 36. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


2 π4
3 π6
1 π3
A.
e .
B.
e .
C. e .
D. 1.
2
2
2
Câu 37. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (II) sai.

B. Câu (I) sai.

C. Khơng có câu nào D. Câu (III) sai.
sai.
0
Câu 38. [2] Cho hàm số y = ln(2x + 1). Tìm m để y (e) = 2m + 1

1 + 2e
1 + 2e
1 − 2e
1 − 2e
A. m =
.
B. m =
.
C. m =
.
D. m =
.
4 − 2e
4e + 2
4e + 2
4 − 2e
Trang 3/10 Mã đề 1


Câu 39. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (−∞; 6, 5).
B. (4; 6, 5].
C. [6, 5; +∞).

D. (4; +∞).

Câu 40. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1. √
1
3
3

C. .
D.
.
A. 1.
B. .
2
2
2
Câu 41. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P.
B. d nằm trên P hoặc d ⊥ P.
C. d ⊥ P.
D. d song song với (P).
Câu 42. Khẳng định nào sau đây đúng?
A. Hình lăng trụ tứ giác đều là hình lập phương.
B. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ đứng là hình lăng trụ đều.
Z 1
Câu 43. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

1
1
.
C. 0.
D. .
2
4

Câu 44. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng (S AB). Thiết diện của
√mặt phẳng (AIC) có diện
√tích là
√ hình chóp S .ABCD với
2
2
2
2
11a
a 7
a 2
a 5
A.
.
B.
.
C.
.
D.
.
32
8
4
16
Câu 45. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

αβ

α β
C. aα bα = (ab)α .
D. aα+β = aα .aβ .
A. a = (a ) .
B. β = a β .
a
Câu 46. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 3ac
3b + 2ac
A.
.
B.
.
C.
.
D.
.
c+2
c+2
c+1
c+3
log(mx)
Câu 47. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m ≤ 0.
B. m < 0 ∨ m > 4.
C. m < 0 ∨ m = 4.

D. m < 0.
A. 1.

B.

Câu 48. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 4).
B. (2; 4; 3).
C. (1; 3; 2).
D. (2; 4; 6).
Câu 49. Tứ diện đều thuộc loại
A. {5; 3}.
B. {3; 4}.

C. {4; 3}.

D. {3; 3}.

x+1
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2016
2017
4035
A. 2017.
B.
.
C.
.

D.
.
2017
2018
2018
Câu 51. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18. √
A. 27.
B. 8.
C. 9.
D. 3 3.
!

Câu 50. [3] Cho hàm số f (x) = ln 2017 − ln

Câu 52. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số mặt của khối chóp.
B. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
C. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
D. Số cạnh của khối chóp bằng số mặt của khối chóp.
Trang 4/10 Mã đề 1


Câu 53. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.423.000.
B. 102.016.000.
C. 102.016.000.
D. 102.424.000.

Câu 54. [2]√Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 2
B. m = ± 3.
C. m = ±1.
D. m = ±3.
A. m = ± 2.
Câu 55. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A
đáy (ABC) một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √
a3
a3 3
a3 3
A.
.
B.
.
C.
.
4
12
4
Câu 56.
bằng 1 là:
√ Thể tích của khối lăng√trụ tam giác đều có cạnh √
3
3
3
A.
.
B.
.
C.

.
4
2
12
Câu 57. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−1; 1).
B. (−∞; −1).
C. (−∞; 1).

D. (1; +∞).

Câu 58. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 9.
B. 5.

D. 7.

C. 0.

Câu 59. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −5.
B. x = −8.
C. x = −2.

⊥ (ABC) và (S BC) hợp với

a3 3
D.
.

8
D.

3
.
4

D. x = 0.

0
Câu 60. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
√ C đến đường thẳng BB bằng 2, khoảng
0
0
cách từ A đến các đường thẳng BB và CC lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
3
2
. Thể tích khối lăng trụ đã cho bằng
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
3


2 3
A. 1.
B.
.
C. 2.
D. 3.
3

Câu 61. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là 1.
B. Phần thực là 4, phần ảo là −1.
C. Phần thực là −1, phần ảo là −4.
D. Phần thực là −1, phần ảo là 4.

Câu 62. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
A. 25.
B. .
C. 5.
D. 5.
5
Câu 63. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦√. Thể tích khối chóp S .ABCD

√ là
3
3
3
3
8a 3
8a 3
a 3
4a 3
A.
.
B.

.
C.
.
D.
.
3
9
9
9
Câu 64. Cho
Z hai hàm yZ= f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?


f 0 (x)dx =

A. Nếu
Z
B. Nếu

f (x)dx =

g0 (x)dx thì f (x) = g(x), ∀x ∈ R.

Z

g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
0
C. Nếu f (x) = g(x) + 1, ∀x ∈ R thì

f (x)dx =
g0 (x)dx.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Câu 65. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba mặt.
B. Bốn mặt.
C. Năm mặt.

D. Hai mặt.
Trang 5/10 Mã đề 1


tan x + m
Câu 66. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (−∞; −1) ∪ (1; +∞). B. (−∞; 0] ∪ (1; +∞). C. [0; +∞).
D. (1; +∞).
Câu 67. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là

4a3 3
a3

a3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
3
6
3
Câu 68. Dãy
!n số nào sau đây có giới
!n hạn là 0?
!n
!n
5
1
5
4
A. − .
B.
.
C.
.
D.
.

3
3
3
e
x−1 y z+1
= =

Câu 69. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. −x + 6y + 4z + 5 = 0.
B. 2x − y + 2z − 1 = 0.
C. 2x + y − z = 0.
D. 10x − 7y + 13z + 3 = 0.
Câu 70. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp 4 lần.
C. Tăng gấp đôi.
D. Tăng gấp 6 lần.
m
ln2 x
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
Câu 71. [3] Biết rằng giá trị lớn nhất của hàm số y =
x
e
số tự nhiên. Tính S = m2 + 2n3

A. S = 24.
B. S = 135.
C. S = 32.
D. S = 22.
Câu 72. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim− f (x) = f (b).
B. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim+ f (x) = f (a) và lim+ f (x) = f (b).
D. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a

x→a

x→b

x→b

−2x2

Câu 73. [2-c] Giá trị lớn nhất của hàm số y = xe
1
1
B.
.
A. 2 .

e
2e3

trên đoạn [1; 2] là
1
C. √ .
2 e
!x
1
1−x

Câu 74. [2] Tổng các nghiệm của phương trình 3 = 2 +
9
A. 1 − log2 3.
B. − log2 3.
C. log2 3.

D.

2
.
e3

D. − log3 2.

Câu 75.√Thể tích của tứ diện đều √
cạnh bằng a
3
3
a 2

a 2
A.
.
B.
.
6
12



a3 2
a3 2
C.
.
D.
.
2
4
1
Câu 76. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = −3, m = 4.
B. m = 4.
C. −3 ≤ m ≤ 4.
D. m = −3.
Câu 77. Dãy số nào sau đây có giới hạn khác 0?
n+1
sin n

A.
.
B.
.
n
n

C.

1
.
n

1
D. √ .
n


Câu 78. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 1 nghiệm.
B. 3 nghiệm.
C. Vô nghiệm.
D. 2 nghiệm.
Trang 6/10 Mã đề 1


Câu 79. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên

A. Cả hai đều sai.
B. Chỉ có (I) đúng.

C. Chỉ có (II) đúng.

D. Cả hai đều đúng.

x2
Câu 80. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
B. M = , m = 0.
C. M = e, m = 1.
D. M = e, m = 0.
A. M = e, m = .
e
e
x+2
Câu 81. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 2.
B. 3.
C. 1.
D. Vô số.
Câu 82. [1] Hàm số nào đồng√biến trên khoảng (0; +∞)?
A. y = loga x trong đó a = 3 − 2.
B. y = log √2 x.

D. y = log 14 x.
C. y = log π4 x.
Câu 83. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 6.
B. y(−2) = 2.
C. y(−2) = 22.
D. y(−2) = −18.
Câu 84. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 0).
B. Hàm số đồng biến trên khoảng (1; 2).
C. Hàm số nghịch biến trên khoảng (0; 1).
D. Hàm số nghịch biến trên khoảng (1; +∞).
Câu 85. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; 0) và (1; +∞). B. (−1; 0).
C. (−∞; −1) và (0; +∞). D. (0; 1).
Câu 86. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng


a 2
a 2
.
B.
.
C. 2a 2.
D. a 2.
A.

4
2
Câu 87. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −5.
B. −15.
C. −9.
D. −12.
cos n + sin n
Câu 88. Tính lim
n2 + 1
A. 1.
B. 0.
C. −∞.
D. +∞.
2
x −9
Câu 89. Tính lim
x→3 x − 3
A. −3.
B. 6.
C. +∞.
D. 3.
Câu 90. Khối đa diện đều loại {4; 3} có số cạnh
A. 10.
B. 20.

C. 30.

Câu 91. [2] Cho hàm số f (x) = x ln x. Giá trị f (e) bằng

2
A. .
B. 2e + 1.
C. 3.
e
5
Câu 92. Tính lim
n+3
A. 0.
B. 1.
C. 2.
2

D. 12.

0

D. 2e.

D. 3.
Trang 7/10 Mã đề 1


ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. −3.
B. 0.
C. 1.



Câu 94. Tìm
giá
trị
lớn
nhất
của
hàm
số
y
=
x
+
3
+
6−x


A. 2 + 3.
B. 3 2.
C. 3.
Z

2

Câu 93. Cho

D. 3.


D. 2 3.

Câu 95. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 13.
B. 13.
C. log2 2020.
D. 2020.
Câu 96. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−1; 3].
B. [−3; 1].
C. (−∞; −3].
D. [1; +∞).
x−2
Câu 97. Tính lim
x→+∞ x + 3
2
A. − .
B. 1.
C. −3.
D. 2.
3
Câu 98. Khối đa diện đều loại {5; 3} có số đỉnh
A. 30.
B. 12.
C. 20.
D. 8.
Câu 99. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1

1
1
A. m < .
B. m ≥ .
C. m > .
D. m ≤ .
4
4
4
4
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥
Câu 100. Cho hình chóp S .ABC có BAC
(ABC). Thể

√ tích khối chóp S .ABC
√là

a3 3
a3 3
a3 2
A.
.
B.
.
C.
.
D. 2a2 2.
24
12

24
1
Câu 101. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. .
B. − .
C. 3.
D. −3.
3
3
Câu 102. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất
điểm đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 24 m.
B. 12 m.
C. 8 m.
D. 16 m.
Câu 103. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


a3 3
a3 3
a3
3
A. a .
B.
.

C.
.
D.
.
6
2
3
Câu 104. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 0.
B. 2.
C. 1.
D. 3.
Câu 105. Dãy số nào sau đây có giới hạn là 0?
n2 + n + 1
1 − 2n
A. un =
.
B.
u
=
.
n
(n + 1)2
5n + n2
Câu 106. [2] Phương trình log x 4 log2
A. 1.

B. 2.

C. un =


n2 − 3n
.
n2

D. un =

n2 − 2
.
5n − 3n2

!
5 − 12x
= 2 có bao nhiêu nghiệm thực?
12x − 8
C. 3.
D. Vơ nghiệm.

Câu 107. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. .
B. 3.
C. 1.
D. .
2
2
Trang 8/10 Mã đề 1



Câu 108. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 20 triệu đồng.
B. 2, 25 triệu đồng.
C. 3, 03 triệu đồng.
D. 2, 22 triệu đồng.
Câu 109. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n2 lần.
B. 2n3 lần.
C. n3 lần.
D. n3 lần.
Câu 110. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
Câu 111. Khối đa diện đều loại {3; 3} có số đỉnh
A. 4.
B. 5.

C. 2.

Câu 112. Khối lập phương thuộc loại
A. {3; 3}.
B. {3; 4}.


C. {5; 3}.

1
1
1
+
+ ··· +
1 1+2
1 + 2 + ··· + n
3
C. +∞.
B. .
2

D. 3.
D. {4; 3}.
!

Câu 113. [3-1131d] Tính lim
A. 2.

D.

5
.
2

Câu 114. Phát biểu nào sau đây là sai?
A. lim un = c (Với un = c là hằng số).

1
C. lim k = 0 với k > 1.
n

B. lim qn = 1 với |q| > 1.
1
D. lim √ = 0.
n

Câu 115. [1] Giá trị của biểu thức 9log3 12 bằng
A. 4.
B. 144.

C. 2.

D. 24.

Câu 116. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối tứ diện đều.

C. Khối 12 mặt đều.

D. Khối bát diện đều.

Câu 117. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0)
lần lượt là hình chiếu của B, C lên các !cạnh AC, AB. Tọa độ hình!chiếu của A lên BC là !
8
7
5

A. (2; 0; 0).
B.
; 0; 0 .
C.
; 0; 0 .
D.
; 0; 0 .
3
3
3
Câu 118. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B. a3 .
C.
.
D.
.
24
6
12
Câu 119. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 3.
B. 1.
C. 0.

D. 2.
mx − 4
Câu 120. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 34.
B. 26.
C. 67.
D. 45.
Trang 9/10 Mã đề 1


Câu 121. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi
M, N và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,
√ N, P bằng



14 3
20 3
A.
.
B.
.
C. 6 3.
D. 8 3.
3
3
Câu 122. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )

A. P = −10.
B. P = 10.
C. P = 21.
D. P = −21.



x = 1 + 3t




Câu 123. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi




z = 1
qua điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là












x
=
−1
+
2t
x
=
1
+
7t
x
=
1
+
3t
x = −1 + 2t

















A. 
.
C. 
D. 
y = −10 + 11t . B. 
y=1+t
y = 1 + 4t .
y = −10 + 11t .
















z = −6 − 5t

z = 1 + 5t
z = 1 − 5t
z = 6 − 5t
Câu 124. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n lần.
B. n2 lần.
C. 3n3 lần.
D. n3 lần.
Câu 125. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn
nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
100.1, 03
100.(1, 01)3
triệu.
B. m =
triệu.
A. m =
3
3
120.(1, 12)3
(1, 01)3
triệu.
D.
m
=
triệu.
C. m =
(1, 01)3 − 1

(1, 12)3 − 1
2
4
3
Câu 126. Cho z √
là nghiệm của phương trình
√ x + x + 1 = 0. Tính P = z + 2z − z
−1 + i 3
−1 − i 3
A. P =
.
B. P =
.
C. P = 2i.
D. P = 2.
2
2
Câu 127. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −3.
C. m = −2.
D. m = −1.
q
2
Câu 128. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [0; 4].

C. m ∈ [0; 2].
D. m ∈ [−1; 0].

Câu 129. Khối đa diện đều loại {3; 5} có số cạnh
A. 20.
B. 8.

C. 12.

D. 30.

Câu 130. Cho hàm số y = x − 2x + x + 1. Mệnh đề nào dưới đây đúng?
3

2

A. Hàm số nghịch biến trên khoảng (1; +∞).
!
1
C. Hàm số nghịch biến trên khoảng −∞; .
3

!
1
B. Hàm số nghịch biến trên khoảng ; 1 .
3!
1
D. Hàm số đồng biến trên khoảng ; 1 .
3


- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
D

1.

2.

C

3.

4.

5. A

C
B

6. A
D

7.


8.

9. A

B
C

10.

11.

B

12. A

13.

B

14.

15.

B

16. A

C

18.


17. A
D

19.

D

20. A
22.

D

23. A

24.

D

25. A

26.

27. A

28.

21.

B


29.

D

D
C

30.

31. A
D

33.

C

32.

D

34.

D

35.

C

36. A


37.

C

38.

C

39.

B

40. A

41.

B

42.

B

43.

B

44.

B


45.

B

46. A

47.

48.

C

49.

D

50.

51.

D

52. A

53.

D

54.


55.

D

56. A

57. A

D
C
C

58. A

59.

B

60.

61.

B

62. A

63.

B


64.

D

65. A

66.

D

67. A

68.
1

C

B


69.

D

71.

70. A
72. A


C

73. A
75.

74.
76. A

B

77. A
79.

C

81. A
D

D

80.

D

D

C

86.


B

88.

B

90.

B

91.

B

84.

B

87.
89.

78.
82.

83.
85.

B

D


92. A

C

93. A

94.

B

95. A

96.

B

97.

B
D

99.
101.
105.

C

100.


C

102.

B
C

103.

98.

D

104. A

B

106. A

107.

D

108.

D

109.

D


110.

D

111. A

112.

D

113. A

114.

B

116.

B

115.

B

117.

C

118.


119.

C

120. A

121.

C

122.

D

124.

D

123.

D

D

125.

C

126.


D

127.

C

128.

D

129.

D

130.

2

B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×