Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (685)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (154.78 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng




a 2
a 2
.
D.
.
A. a 2.
B. a 3.
C.
2
3
Câu 2.√ Biểu thức nào sau đây khơng
√ 0có nghĩa
−3
A.
−1.
B. (− 2) .


C. (−1)−1 .
D. 0−1 .
!4x
!2−x
3
2


Câu 3. Tập các số x thỏa mãn
3
2
#
#
"
!
"
!
2
2
2
2
A. −∞; .
B. −∞; .
C. − ; +∞ .
D.
; +∞ .
3
5
3
5

Câu 4. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 7, 2.
B. 72.
C. 0, 8.

D. −7, 2.

Câu 5. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B thuộc
∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và AC = BD = a.
Khoảng cách từ A đến mặt phẳng (BCD) bằng




a 2
a 2
A. a 2.
B. 2a 2.
C.
.
D.
.
2
4
Câu 6. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 6 lần.
B. Tăng gấp 4 lần.
C. Tăng gấp đơi.
D. Tăng gấp 8 lần.

Câu 7. √[2] Cho hình lâp phương√ABCD.A0 B0C 0 D0 cạnh a. √
Khoảng cách từ C đến AC√0 bằng
a 6
a 3
a 6
a 6
.
B.
.
C.
.
D.
.
A.
7
2
2
3




Câu 8. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
3
3
9
A. 0 < m ≤ .
B. 0 ≤ m ≤ .
C. 0 ≤ m ≤ .
D. m ≥ 0.

4
4
4
log7 16
Câu 9. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. 4.
B. −4.
C. 2.
D. −2.
2

2

Câu 10. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = a.
B. lim f (x) = f (a).
x→a

x→a

x→a

C. f (x) có giới hạn hữu hạn khi x → a.

x→a

x→a


7n − 2n + 1
3n3 + 2n2 + 1
B. 1.
2

Câu 11. Tính lim

D. lim+ f (x) = lim− f (x) = +∞.

3

2
7
C. - .
D. .
3
3
Câu 12. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của

√ hình chóp S .ABCD với
√mặt phẳng (AIC) có diện tích

2
2
2
2

a 7
a 2
a 5
11a
A.
.
B.
.
C.
.
D.
.
8
4
16
32
A. 0.

Trang 1/10 Mã đề 1


Câu 13. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m ≤ 3.
C. m < 3.
D. m ≥ 3.
Câu 14. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 32π.

B. V = 4π.
C. 16π.
D. 8π.
Câu 15. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
B. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.

C. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
D. Cả ba đáp án trên.
Câu 16. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 1.
B. Vô số.
C. 3.
D. 2.
Câu 17. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
S .ABCD là
của AD, biết
a 5. Thể tích khối chóp √
√ S H ⊥ (ABCD), S A =
3
3
3
2a
4a 3
4a3
2a 3
.
B.

.
C.
.
D.
.
A.
3
3
3
3
Câu 18. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (1; 0; 2).
B. ~u = (2; 1; 6).
C. ~u = (3; 4; −4).
D. ~u = (2; 2; −1).
Câu 19. Khối đa diện đều loại {4; 3} có số cạnh
A. 20.
B. 12.

C. 30.


D. 10.

Câu 20. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
Thể tích khối chóp S .ABC√là
√ với đáy và S C = a 3.3 √

3
a 6
a 3
a3 3
2a3 6
A.
.
B.
.
C.
.
D.
.
12
4
2
9
Câu 21. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 3.
B. V = 5.

C. V = 6.
D. V = 4.
Câu 22. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
C. Hàm số nghịch biến trên khoảng (−2; 1).
D. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
tan x + m
Câu 23. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (1; +∞).
B. (−∞; 0] ∪ (1; +∞). C. [0; +∞).
D. (−∞; −1) ∪ (1; +∞).
Câu 24. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 + 2e
1 − 2e
A. m =
.
B. m =
.
C. m =
.
4e + 2
4e + 2
4 − 2e


D. m =

1 + 2e
.
4 − 2e
Trang 2/10 Mã đề 1


Câu 25. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 24.
C. 23.
D. 21.
Câu 26. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
B. .
C. 6.
D. 9.
A. .
2
2
Câu 27. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là

10
20
40
20
C50
.(3)40
C50
.(3)30
C50
.(3)10
C50
.(3)20
.
B.
.
C.
.
D.
.
A.
450
450
450
450
1
Câu 28. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 1) và (3; +∞). B. (−∞; 3).
C. (1; +∞).
D. (1; 3).

 π
Câu 29. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


1 π
3 π6
2 π4
C.
D. e 3 .
A. 1.
B.
e .
e .
2
2
2
Câu 30. Khối đa diện đều loại {3; 3} có số mặt
A. 4.
B. 5.
C. 3.
D. 2.
Câu 31. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 6 mặt.
C. 3 mặt.
D. 5 mặt.
1
Câu 32. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3

A. 0 ≤ m ≤ 1.
B. 2 ≤ m ≤ 3.
C. 0 < m ≤ 1.
D. 2 < m ≤ 3.


Câu 33. Cho chóp S .ABCD có đáy ABCD là hình vuông cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là

3

a3 3
a 3
a3
3
.
B. a 3.
.
D.
.
C.
A.
3
4
12
Câu 34. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

A. β = a β .

B. aαβ = (aα )β .
C. aα+β = aα .aβ .
D. aα bα = (ab)α .
a
Câu 35. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên sai.

B. Chỉ có (I) đúng.

C. Cả hai câu trên đúng. D. Chỉ có (II) đúng.

Câu 36. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 3 nghiệm.
B. 1 nghiệm.
C. 2 nghiệm.

D. Vô nghiệm.

Câu 37. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối bát diện đều.

B. Khối lăng trụ tam giác.
C. Khối lập phương.
D. Khối tứ diện.
Trang 3/10 Mã đề 1


Câu 38. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD là

a3 3
a3
a3 3
3
A. a .
B.
.
C.
.
D.
.
3
3
9
Câu 39. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3

.
C.
.
D.
.
A. a3 .
B.
6
12
24

x2 + 3x + 5
Câu 40. Tính giới hạn lim
x→−∞
4x − 1
1
1
B. 1.
C. .
D. 0.
A. − .
4
4
Câu 41. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
1
1
2
9
A.

.
B. .
C. .
D.
.
10
5
5
10
Câu 42. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−3; 1].
B. [1; +∞).
C. (−∞; −3].
D. [−1; 3].
Câu 43. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 6.
B. y(−2) = 22.
C. y(−2) = 2.
D. y(−2) = −18.
Câu 44. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là −4.
B. Phần thực là −1, phần ảo là 4.
C. Phần thực là 4, phần ảo là −1.
D. Phần thực là 4, phần ảo là 1.
Câu 45. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m ≤ 3.

C. m ≥ 3.
D. m > 3.
Câu 46. [1] Đạo hàm của hàm số y = 2 x là
1
1
.
B. y0 = 2 x . ln 2.
C. y0 = 2 x . ln x.
D. y0 =
.
A. y0 = x
2 . ln x
ln 2
Câu 47. [4-1246d] Trong tất cả các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất
√ của |z|
A. 1.
B. 2.
C. 5.
D. 3.
1
Câu 48. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2) ∪ (−1; +∞). B. (−∞; −2] ∪ [−1; +∞). C. −2 < m < −1.
D. −2 ≤ m ≤ −1.
1
Câu 49. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 2 ≤ m ≤ 3.

C. 2 < m ≤ 3.
D. 0 ≤ m ≤ 1.
Câu 50. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = (0; +∞).

C. D = R \ {0}.

D. D = R \ {1}.

Câu 51. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.

C. Khối 20 mặt đều.

D. Khối bát diện đều.

Câu 52. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog
A. 25.

B. 5.

C.


a

5




bằng
5.

D.

1
.
5
Trang 4/10 Mã đề 1


Câu 53. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P.
B. d song song với (P).
C. d ⊥ P.
D. d nằm trên P hoặc d ⊥ P.
Câu 54. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 6).
B. (1; 3; 2).
C. (2; 4; 3).
D. (2; 4; 4).
Câu 55. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = −10.
C. P = −21.
D. P = 21.
Câu 56. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao

cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
C. .
D. 3.
A. 1.
B. .
2
2
Câu 57. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 24.
B. 20.
C. 3, 55.
D. 15, 36.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 58. [3-12217d] Cho hàm số y = ln
x
+
1
A. xy0 = −ey − 1.
B. xy0 = −ey + 1.
C. xy0 = ey − 1.
D. xy0 = ey + 1.
Câu 59. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −3.
B. 0.
C. 3.

D. −6.
3

Câu 60. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e2 .
B. e5 .
C. e.

D. e3 .

Câu 61. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. Không tồn tại.
B. −5.
C. −7.

D. −3.

Câu 62. [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
1
ab
ab
.
B. √
.
C. √
.
D. 2
.

A. √
a + b2
a2 + b2
2 a2 + b2
a2 + b2
Câu 63. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −2e2 .
B. −e2 .
C. 2e4 .
D. 2e2 .
0

0

Câu 64. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối bát diện đều.

0

0

C. Khối 12 mặt đều.

D. Khối tứ diện đều.

Câu 65. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu của A lên BC là
!

!
8
7
5
; 0; 0 .
B.
; 0; 0 .
C. (2; 0; 0).
D.
; 0; 0 .
A.
3
3
3
Câu 66. Thể tích của khối lăng√trụ tam giác đều có cạnh √
bằng 1 là:
3
3
3
A. .
B.
.
C.
.
4
4
12


3

D.
.
2
q
2
Câu 67. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [−1; 0].
C. m ∈ [0; 1].
D. m ∈ [0; 4].
Câu 68. Khối đa diện đều loại {3; 4} có số đỉnh
A. 6.
B. 8.

C. 4.

D. 10.
Trang 5/10 Mã đề 1


Câu 69. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (0; 1).
B. (−∞; −1) và (0; +∞). C. (−∞; 0) và (1; +∞). D. (−1; 0).
d = 120◦ .
Câu 70. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a

.
B. 4a.
C. 3a.
D. 2a.
A.
2
!
5 − 12x
Câu 71. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 1.
B. 3.
C. Vô nghiệm.
D. 2.

Câu 72. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a 38
3a
a 38
3a 58
.
B.
.
C.

.
D.
.
A.
29
29
29
29
Câu 73. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 5 mặt. B. 5 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 6 cạnh, 6 mặt.
Câu 74. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp tứ giác.
B. Một khối chóp tam giác, một khối chóp ngữ giác.
C. Hai khối chóp tam giác.
D. Hai khối chóp tứ giác.
Câu 75.
√ [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
B. 10.
C. 1.
D. 2.
A. 2.
x
Câu 76. Tính diện tích hình phẳng giới hạn bởi các đường
√ y = xe , y = 0, x = 1.
1
3
A. 1.
B. .
C.
.

D.
2
2
Câu 77. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 3ac
.
B.
.
C.
.
D.
A.
c+2
c+1
c+2
Câu 78. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. e.
B. −2 + 2 ln 2.
C. 1.
D.

3
.
2
3b + 2ac
.
c+3
4 − 2 ln 2.


Câu 79. [2-c] Giá trị nhỏ nhất của hàm số y = x ln x trên đoạn [e ; e] là
1
1
1
A. − .
B. − .
C. −e.
D. − 2 .
e
2e
e
Câu 80. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp
√ là 1728. Khi đó, các kích thước của hình hộp là
√ đã cho
B. 2, 4, 8.
C. 6, 12, 24.
D. 8, 16, 32.
A. 2 3, 4 3, 38.
−1

2

Câu 81. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 6 cạnh, 4 mặt. B. 3 đỉnh, 3 cạnh, 3 mặt. C. 6 đỉnh, 6 cạnh, 4 mặt. D. 4 đỉnh, 8 cạnh, 4 mặt.
Câu 82. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; −8).
B. A(−4; 8).
C. A(−4; −8)(.

D. A(4; 8).
Câu 83. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 84. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; +∞).
B. (0; 2).

C. (−∞; 2).

D. (−∞; 0) và (2; +∞).
Trang 6/10 Mã đề 1


Câu 85. Khối đa diện đều loại {4; 3} có số mặt
A. 8.
B. 6.

C. 10.

Câu 86. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (1; 2).
B. (−∞; +∞).
C. [1; 2].

D. 12.
D. [−1; 2).


Câu 87. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n3 lần.
B. 3n3 lần.
C. n lần.
D. n2 lần.
Câu 88. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 70, 128 triệu đồng. B. 3, 5 triệu đồng.
C. 20, 128 triệu đồng. D. 50, 7 triệu đồng.
Câu 89. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 10 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
log 2x

x2
1 − 2 log 2x
1
B. y0 =
.
C. y0 = 3
.
3
x
2x ln 10

Câu 90. [1229d] Đạo hàm của hàm số y =
A. y0 =


1 − 4 ln 2x
.
2x3 ln 10

D. y0 =

1 − 2 ln 2x
.
x3 ln 10

Câu 91. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. .
B. 5.
C.
.
D. 7.
2
2
Câu 92. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số nghịch biến trên khoảng (−∞; 0).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số đồng biến trên khoảng (1; 2).
Câu 93. Khối đa diện đều loại {3; 5} có số mặt
A. 30.
B. 20.


C. 12.

D. 8.

Câu 94. [2]√Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 2√
A. m = ± 3.
B. m = ±3.
C. m = ±1.
D. m = ± 2.
Câu 95. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a
B.
.
C. a.
D. .
A. .
2
2
3
Câu 96. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 1.
B. 2.
C. 0.
Câu 97. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 10.


Câu 98. [1] Biết log6 a = 2 thì log6 a bằng
A. 6.
B. 108.

D. 3.

C. 6.

D. 12.

C. 36.

D. 4.

Câu 99. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 27.
B. 10.
C. 12.

D. 3.

Câu 100. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích
hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 2.
B. 0, 4.
C. 0, 5.
D. 0, 3.
Trang 7/10 Mã đề 1



Câu 101. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách √
từ C đến đường thẳng BB0 bằng 2, khoảng
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2
3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3 √

2 3
B. 1.
C.
A. 3.
.
D. 2.
3
Câu 102.
[1233d-2] MệnhZđề nào sau đây
Z
Z sai?
[ f (x) − g(x)]dx =

A.

f (x)dx −

g(x)dx, với mọi f (x), g(x) liên tục trên R.


Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
C.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
D.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
B.

Câu 103. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
A. 96.

B. 64.

C. 82.

Câu 104. [12213d] Có bao nhiêu giá trị ngun của m để phương trình
nhất?
A. 1.
Câu 105. Tính lim
x→2

A. 0.


D. 81.
1
3|x−1|

8
x

= 3m − 2 có nghiệm duy

B. 3.

C. 4.

D. 2.

x+2
bằng?
x
B. 2.

C. 3.

D. 1.

Câu 106. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?

A. y = log √2 x.
B. y = loga x trong đó a = 3 − 2.
C. y = log π4 x.

D. y = log 14 x.
Câu 107. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 108. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (II) và (III).
Câu 109. Hàm số y =
A. x = 3.

B. (I) và (III).
x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 2.

C. Cả ba mệnh đề.

D. (I) và (II).

C. x = 0.

D. x = 1.


Câu 110. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≥ 0.
B. m > − .
C. m ≤ 0.
D. − < m < 0.
4
4
Trang 8/10 Mã đề 1


x−3
Câu 111. [1] Tính lim
bằng?
x→3 x + 3
A. 1.
B. +∞.

C. −∞.

D. 0.


Câu 112. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√ cho là




πa3 3
πa3 3
πa3 3
πa3 6
.
B. V =
.
C. V =
.
D. V =
.
A. V =
6
2
3
6
Câu 113. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều. C. Khối tứ diện đều.
D. Khối lập phương.
x+3
Câu 114. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 3.
B. 1.
C. 2.
D. Vô số.

Câu 115. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.

2
Câu 116. [4-1228d] Cho phương trình (2 log3 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả
bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vơ số.
B. 62.
C. 63.
D. 64.
Câu 117. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 6.
B. 8.
C. 4.
D. 3.
d = 60◦ . Đường chéo
Câu 118. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0





2a3 6
4a3 6
a3 6

3
.
B. a 6.
C.
.
D.
.
A.
3
3
3
Câu 119. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 0.
B. 9.
C. 7.
D. 5.
Câu 120. ZCho hai hàmZy = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu

f (x)dx =

g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
0
B. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z

Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Câu 121. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 2.

B. 1.

C. 0.

D. 3.
2

2

Câu 122.
và giá trị lớn nhất của hàm số f (x) = 2sin x + 2cos x lần lượt
√ là
√ [3-c] Giá trị nhỏ nhất √
A. 2 và 3.
B. 2 2 và 3.

C. 2 và 3.
D. 2 và 2 2.
Trang 9/10 Mã đề 1


x+1
Câu 123. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. .
B. 1.
C. .
D. .
2
3
6
Câu 124. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 9 năm.
B. 7 năm.
C. 8 năm.
D. 10 năm.
Câu 125. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 10.
B. ln 12.
C. ln 14.

D. ln 4.
Câu 126. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 − sin 2x.
B. 1 + 2 sin 2x.
C. −1 + sin x cos x.
2n − 3
Câu 127. Tính lim 2
bằng
2n + 3n + 1
A. +∞.
B. 0.
C. 1.

D. −1 + 2 sin 2x.
D. −∞.

Câu 128. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
√ S .ABCD là
√ phẳng vng góc với (ABCD). Thể tích khối chóp
3
3
3

a 3
a 3
a 2
A.
.
B.

.
C. a3 3.
D.
.
4
2
2
3
2
x
Câu 129. [2] Tìm m để giá trị lớn nhất
√ của hàm số y = 2x + (m√ + 1)2 trên [0; 1] bằng 8
A. m = ±3.
B. m = ± 2.
C. m = ± 3.
D. m = ±1.
1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ
Câu 130. [12210d] Xét các số thực dương x, y thỏa mãn log3
x + 2y
nhất Pmin của P√= x + y.



18 11 − 29
9 11 + 19
2 11 − 3
9 11 − 19
A. Pmin =
. B. Pmin =

. C. Pmin =
.
D. Pmin =
.
21
9
3
9
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

C

2.

D

3.

C

4.


D

5.

C

6.

D

D

7.
9.

B

11.

8.

B

10.

B

12. A

C


13.

D

15.

16.

D

17.

18. A

19.

20. A

21.

22. A

23. A

24. A

25. A

26. A


27. A

28. A

29.

30. A

31. A

32.

D

C
D
B
D

C

33. A

34. A

35.

36.


C

37.

38.

C

39.

C
D
C

40. A

41.

D

42. A

43.

D

44.
46.

45.


C
B

47.

48.

D

51. A

52. A

53.

54. A

55.

56.

C

57.

58.

C


59. A

B

66.

C
D
C
D

61. A

62. A
64.

B

49.

50. A

60.

C

D
B

63.


B

65.

B

67.

B

69.

68. A
1

D


70. A

71. A

72. A

73. A

74. A

75.


76. A

77. A

78. A

79.
C

80.

D

83. A

84.

D

85.

B

87. A

B

88.


B

81. A

82.
86.

C

89.

C
D

90.

D

91. A

92. A

93.

B

94.

C


95.

C

96.

C

97.

D

98.

D

99.

D

100.

D

101.

D

102.


D

103.

D

104. A

105.

106. A

107.

D

109.

D

111.

D

D

108.
110.

B

C

112.
114. A

113.

B

115.

B

116.

B

117.

118.

B

119.

120.
122.

B


123.

B

D

125.

126.
130.

D

121. A

C

124. A
128.

B

D
B
C

2

C


127.

B

129.

B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×