TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 11 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
A. 2.
B.
.
C. .
2
2
D. 1.
Câu 2. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 3 mặt.
D. 4 mặt.
Câu 3. Tính thể tích khối lập phương
biết tổng diện tích tất cả các mặt bằng 18.
√
A. 8.
B. 3 3.
C. 27.
D. 9.
Câu 4. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD. Cho
hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 16π.
B. 32π.
C. 8π.
D. V = 4π.
Câu 5. Bát diện đều thuộc loại
A. {3; 3}.
B. {3; 4}.
C. {4; 3}.
D. {5; 3}.
Câu 6. Trong các mệnh đề dưới đây, mệnh đề nào! sai?
un
= +∞.
A. Nếu lim un = a > 0 và lim vn = 0 thì lim
vn !
un
B. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
!
un
= −∞.
C. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
vn
D. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
Câu 7. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai quyển
sách cùng một môn nằm cạnh nhau là
1
9
1
2
B.
.
C.
.
D. .
A. .
5
10
10
5
Câu 8. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
√
A. y = log √2 x.
B. y = loga x trong đó a = 3 − 2.
C. y = log 14 x.
D. y = log π4 x.
√
Câu 9. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 63.
C. Vô số.
D. 62.
Câu 10. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 1.
B. +∞.
C. 3.
D. 2.
Câu 11. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 20.
B. 24.
C. 3, 55.
D. 15, 36.
Câu 12. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√
√ của hàm số. Khi đó tổng M + m
√
A. 7 3.
B. 16.
C. 8 2.
D. 8 3.
Trang 1/11 Mã đề 1
Câu 13. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có một.
B. Có vơ số.
C. Khơng có.
D. Có hai.
Z 1
Câu 14. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
1
A. .
4
0
B.
1
.
2
C. 1.
D. 0.
q
2
Câu 15. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 4].
C. m ∈ [0; 2].
D. m ∈ [0; 1].
Câu 16. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x) − g(x)] = a − b.
B. lim [ f (x) + g(x)] = a + b.
x→+∞
x→+∞
f (x) a
= .
C. lim [ f (x)g(x)] = ab.
D. lim
x→+∞
x→+∞ g(x)
b
ln x p 2
1
Câu 17. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
1
8
8
A. .
B. .
C. .
D. .
3
9
3
9
√
Câu 18. [1] Biết log6 a = 2 thì log6 a bằng
A. 4.
B. 36.
C. 108.
D. 6.
d = 30◦ , biết S BC là tam giác đều
Câu 19. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
26
13
9
16
Câu 20.
! định nào sau đây là sai?
Z Các khẳng
Z
Z
0
A.
Z
C.
f (x)dx = f (x).
Z
k f (x)dx = k
f (x)dx, k là hằng số.
f (x)dx = F(x) + C ⇒
B.
Z
D.
f (x)dx = F(x) +C ⇒
f (t)dt = F(t) + C.
Z
f (u)dx = F(u) +C.
Câu 21. [2]√Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 2√
B. m = ±1.
C. m = ±3.
D. m = ± 2.
A. m = ± 3.
Câu 22. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. (−∞; 6, 5).
C. [6, 5; +∞).
D. (4; 6, 5].
√
Câu 23. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √
√
√
3
a 6
a 2
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
18
6
6
36
Câu 24. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun √
z.
√
√
√
5 13
A.
.
B. 26.
C. 2 13.
D. 2.
13
Câu 25. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 21.
C. 24.
D. 23.
Trang 2/11 Mã đề 1
4
Câu 26. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 :
2
5
5
A. a 3 .
B. a 3 .
C. a 8 .
√3
a2 bằng
7
D. a 3 .
Câu 27. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. Vô nghiệm.
C. 3.
D. 2.
Câu 28. Khối đa diện đều loại {4; 3} có số cạnh
A. 20.
B. 12.
C. 10.
D. 30.
Câu 29. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − .
B. − .
C. −e.
D. − 2 .
2e
e
e
√
Câu 30. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị ngun dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 63.
C. Vô số.
D. 62.
Câu 31. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng
√
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3 √
√
2 3
.
D. 3.
A. 2.
B. 1.
C.
3
Câu 32. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 1.
B. e2016 .
C. 22016 .
D. 0.
π
Câu 33. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2
√
√
1 π3
3 π6
2 π4
A. e .
B. 1.
C.
D.
e .
e .
2
2
2
x+2
Câu 34. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 1.
B. 3.
C. Vô số.
D. 2.
Câu 35. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. e.
B. −2 + 2 ln 2.
C. 1.
D. 4 − 2 ln 2.
3
2
Câu 36. Giá
√ x − 3x − 3x + 2
√
√ trị cực đại của hàm số y =
B. −3 + 4 2.
C. 3 + 4 2.
A. 3 − 4 2.
√
D. −3 − 4 2.
Câu 37. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 12.
B. ln 10.
C. ln 14.
D. ln 4.
Câu 38. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
5a
8a
a
2a
A.
.
B.
.
C. .
D.
.
9
9
9
9
1
Câu 39. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 2 ≤ m ≤ 3.
C. 2 < m ≤ 3.
D. 0 ≤ m ≤ 1.
12 + 22 + · · · + n2
Câu 40. [3-1133d] Tính lim
n3
1
2
A. +∞.
B. 0.
C. .
D. .
3
3
Trang 3/11 Mã đề 1
Câu 41. Khối đa diện đều loại {3; 5} có số mặt
A. 12.
B. 8.
C. 20.
D. 30.
Câu 42. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
B. m ≤ .
C. m > .
D. m ≥ .
A. m < .
4
4
4
4
Câu 43. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 4}.
B. {3; 3}.
C. {5; 3}.
D. {4; 3}.
Câu 44. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
.
C. log2 a = loga 2.
D. log2 a =
.
A. log2 a = − loga 2.
B. log2 a =
loga 2
log2 a
Câu 45. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 3.
B. 0.
C. −6.
D. −3.
Câu 46. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m > 3.
C. m < 3.
D. m ≤ 3.
log(mx)
= 2 có nghiệm thực duy nhất
Câu 47. [3-1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m < 0.
B. m < 0 ∨ m > 4.
C. m < 0 ∨ m = 4.
D. m ≤ 0.
mx − 4
Câu 48. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 45.
B. 67.
C. 26.
D. 34.
Câu 49. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 25 m.
C. 27 m.
D. 1587 m.
Câu 50. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số đồng biến trên khoảng (1; 2).
B. Hàm số nghịch biến trên khoảng (−∞; 0).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng (0; 1).
Câu 51.
f (x), g(x) liên
đề nào sai? Z
Z Cho hàm số Z
Z tục trên R. Trong cácZmệnh đề sau, mệnh Z
A.
f (x)g(x)dx =
f (x)dx g(x)dx.
B.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
Z
Z
Z
Z
C.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
D.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
Câu 52.√Thể tích của tứ diện đều √
cạnh bằng a
3
3
a 2
a 2
A.
.
B.
.
2
6
√
a3 2
C.
.
4
√
a3 2
D.
.
12
x+3
Câu 53. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 1.
B. 3.
C. 2.
D. Vơ số.
Câu 54. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 10 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 55. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (1; +∞).
B. (−∞; 1).
C. (−∞; −1).
D. (−1; 1).
Trang 4/11 Mã đề 1
√
x2 + 3x + 5
Câu 56. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. .
B. − .
C. 0.
D. 1.
4
4
Câu 57. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≤ 3.
B. m ≥ 3.
C. −2 ≤ m ≤ 2.
D. −3 ≤ m ≤ 3.
Câu 58. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
1
ab
1
.
B. 2
.
C. √
.
D. √
.
A. √
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
Câu 59. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n3 lần.
B. n2 lần.
C. 3n3 lần.
D. n lần.
!
5 − 12x
= 2 có bao nhiêu nghiệm thực?
Câu 60. [2] Phương trình log x 4 log2
12x − 8
A. 1.
B. 2.
C. 3.
D. Vô nghiệm.
Câu 61. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
A. 18.
B. 27.
C. 12.
D.
2
Câu 62. Khối đa diện đều loại {3; 4} có số đỉnh
A. 6.
B. 10.
C. 4.
D. 8.
Câu 63. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Không có.
B. Có hai.
C. Có một.
D. Có một hoặc hai.
Câu 64. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 9.
B. 0.
C. 5.
D. 7.
!
3n + 2
2
Câu 65. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 2.
B. 5.
C. 3.
D. 4.
Câu 66. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 2).
B. Hàm số đồng biến trên khoảng (0; 2).
C. Hàm số đồng biến trên khoảng (0; +∞).
D. Hàm số nghịch biến trên khoảng (−∞; 2).
Câu 67. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị
" nhỏ! nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới đây?
5
5
A. 2; .
B.
;3 .
C. (1; 2).
D. [3; 4).
2
2
√
ab.
Câu 68. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên đúng. B. Cả hai câu trên sai.
C. Chỉ có (II) đúng.
D. Chỉ có (I) đúng.
Trang 5/11 Mã đề 1
Câu 69. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 20 triệu đồng.
B. 2, 22 triệu đồng.
C. 2, 25 triệu đồng.
D. 3, 03 triệu đồng.
! x3 −3mx2 +m
1
nghịch biến trên
Câu 70. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
π
khoảng (−∞; +∞)
A. m ∈ R.
B. m ∈ (0; +∞).
C. m = 0.
D. m , 0.
Câu 71. Khối đa diện đều loại {3; 3} có số mặt
A. 2.
B. 4.
C. 3.
D. 5.
Câu 72. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 2).
B. (0; 2).
C. (0; +∞).
D. (−∞; 0) và (2; +∞).
Câu 73. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
20
40
20
10
C50
C50
C50
.(3)20
.(3)10
.(3)30
C50
.(3)40
.
B.
.
C.
.
D.
.
A.
450
450
450
450
Câu 74. Khối đa diện đều loại {3; 3} có số cạnh
A. 4.
B. 8.
C. 6.
D. 5.
Câu 75. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (2; +∞).
B. R.
C. (0; 2).
D. (−∞; 1).
[ = 60◦ , S A ⊥ (ABCD).
Câu 76. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh S C là a. Thể tích khối√chóp S .ABCD là
√
√
a3 3
a3 2
a3 2
3
.
B. a 3.
.
D.
.
C.
A.
4
12
6
√
Câu 77. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. −3.
B. 3.
C. .
D. − .
3
3
Câu 78. Khối đa diện đều loại {3; 5} có số đỉnh
A. 20.
B. 8.
C. 30.
D. 12.
Câu 79. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 1; m = 1.
B. M = e−2 − 2; m = 1.
−2
C. M = e + 2; m = 1.
D. M = e2 − 2; m = e−2 + 2.
Câu 80. Trong các khẳng định sau, khẳng định nào sai?
A. Cả ba đáp án trên.
B. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
C. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
√
D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
Câu 81. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tam giác và một hình chóp tứ giác.
B. Hai hình chóp tam giác.
Trang 6/11 Mã đề 1
C. Một hình chóp tứ giác và một hình chóp ngũ giác.
D. Hai hình chóp tứ giác.
Câu 82. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 6 lần.
B. Tăng gấp 4 lần.
C. Tăng gấp đôi.
D. Tăng gấp 8 lần.
Câu 83. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; 3).
B. A0 (−3; −3; −3).
C. A0 (−3; 3; 1).
D. A0 (−3; 3; 3).
log 2x
là
Câu 84. [3-1229d] Đạo hàm của hàm số y =
x2
1
1 − 2 log 2x
1 − 4 ln 2x
A. y0 = 3
.
B. y0 =
.
C. y0 =
.
3
2x ln 10
x
2x3 ln 10
D. y0 =
1 − 2 ln 2x
.
x3 ln 10
Câu 85. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (0; 1).
B. (−1; 0).
C. (−∞; −1) và (0; +∞). D. (−∞; 0) và (1; +∞).
Câu 86. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 10 năm.
C. 14 năm.
D. 12 năm.
Câu 87. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 1.
B. m ≥ 0.
C. m > −1.
2n − 3
bằng
Câu 88. Tính lim 2
2n + 3n + 1
A. 0.
B. −∞.
C. +∞.
Câu 89. Dãy số nào sau đây có giới hạn là 0?
n2 − 2
n2 + n + 1
A. un =
.
B.
u
=
.
n
5n − 3n2
(n + 1)2
C. un =
n2 − 3n
.
n2
D. m > 0.
D. 1.
D. un =
1 − 2n
.
5n + n2
Câu 90. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (−∞; +∞).
B. (1; 2).
C. [−1; 2).
D. [1; 2].
Câu 91. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 7, 2.
B. 72.
C. −7, 2.
D. 0, 8.
Câu 92. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng
√
√
√
a 2
a 2
.
B.
.
C. a 2.
D. a 3.
A.
3
2
0 0 0 0
0
Câu 93.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 6
a 3
A.
.
B.
.
C.
.
D.
.
7
3
2
2
!2x−1
!2−x
3
3
Câu 94. Tập các số x thỏa mãn
≤
là
5
5
A. (−∞; 1].
B. [3; +∞).
C. (+∞; −∞).
D. [1; +∞).
Câu 95. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
√
√
√
√
a 6
A. 2a 6.
B.
.
C. a 3.
D. a 6.
2
Trang 7/11 Mã đề 1
Câu 96. [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
√ min |z − 1 − i|.
C. 1.
D. 10.
A. 2.
B. 2.
x−1
Câu 97. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác đều ABI có hai đỉnh A, √
B thuộc (C), đoạn thẳng √
AB có độ dài bằng
√
C. 6.
D. 2 2.
A. 2.
B. 2 3.
x2 − 5x + 6
Câu 98. Tính giới hạn lim
x→2
x−2
A. 1.
B. 0.
C. −1.
D. 5.
Câu 99. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng
√
√
√
a 2
a 2
.
B. 2a 2.
.
A.
C. a 2.
D.
2
4
Câu 100. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn
nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ.
120.(1, 12)3
(1, 01)3
triệu.
B.
m
=
triệu.
A. m =
(1, 01)3 − 1
(1, 12)3 − 1
100.(1, 01)3
100.1, 03
C. m =
triệu.
D. m =
triệu.
3
3
Câu 101. Phát biểu nào sau đây là sai?
1
A. lim √ = 0.
B. lim qn = 1 với |q| > 1.
n
1
C. lim un = c (Với un = c là hằng số).
D. lim k = 0 với k > 1.
n
x
Câu 102. [1] Đạo hàm của hàm số y = 2 là
1
1
A. y0 = 2 x . ln 2.
B. y0 = x
.
C. y0 = 2 x . ln x.
D. y0 =
.
2 . ln x
ln 2
Câu 103. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số nghịch biến trên khoảng (−2; 1).
C. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 104. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.
C. Khối bát diện đều.
D. Khối 20 mặt đều.
Câu 105. Tứ diện đều thuộc loại
A. {5; 3}.
B. {3; 4}.
C. {4; 3}.
D. {3; 3}.
Câu 106. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
α+β
α β
α α
α
A. a = a .a .
B. a b = (ab) .
C. β = a β .
D. aαβ = (aα )β .
a
2
Câu 107. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 3 − log2 3.
B. 2 − log2 3.
C. 1 − log2 3.
D. 1 − log3 2.
Câu 108. Khối chóp ngũ giác có số cạnh là
A. 9 cạnh.
B. 10 cạnh.
D. 12 cạnh.
C. 11 cạnh.
Trang 8/11 Mã đề 1
Câu 109. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 1.
C. +∞.
B. 2.
D. 0.
Câu 110. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. (−∞; −3].
B. [−1; 3].
C. [−3; 1].
D. [1; +∞).
Câu 111. Khối đa diện đều loại {5; 3} có số cạnh
A. 12.
B. 20.
!
1
1
1
+
+ ··· +
Câu 112. Tính lim
1.2 2.3
n(n + 1)
A. 1.
C. 8.
B. 2.
Câu 113. Hàm số y =
A. x = 1.
C.
x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 3.
D. 30.
3
.
2
D. 0.
C. x = 0.
D. x = 2.
Câu 114. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. Vơ nghiệm.
C. 1.
D. 3.
Câu 115. Tính lim
x→+∞
A. 1.
x−2
x+3
B. 2.
2
D. − .
3
C. −3.
Câu 116. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
a3 6
a3 6
a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
8
24
48
24
2
Câu 117. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 8.
B. 5.
C. 6.
D. 7.
6
Câu 118. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2 f (x3 ) − √
. Tính
3x
+
1
Z 1
f (x)dx.
0
A. 4.
B. −1.
C. 2.
D. 6.
π π
Câu 119. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 7.
B. 1.
C. 3.
D. −1.
3
2
2
Câu 120. [3-c] Giá trị nhỏ nhất√và giá trị lớn nhất của hàm√số f (x) = 2sin x + 2cos x lần lượt
√ là
A. 2 và 3.
B. 2 và 3.
C. 2 2 và 3.
D. 2 và 2 2.
Câu 121. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x y z−1
x−2 y+2 z−3
A. = =
.
B.
=
=
.
1 1
1
2
2
2
x−2 y−2 z−3
x y−2 z−3
C.
=
=
.
D. =
=
.
2
3
4
2
3
−1
Câu 122. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m > .
C. m ≤ .
D. m < .
4
4
4
4
Trang 9/11 Mã đề 1
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥
Câu 123. Cho hình chóp S .ABC có BAC
(ABC). Thể tích khối chóp S .ABC√là
√
√
√
a3 3
a3 2
a3 3
2
B.
A. 2a 2.
.
C.
.
D.
.
24
24
12
Câu 124. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 6 cạnh, 4 mặt. B. 6 đỉnh, 6 cạnh, 4 mặt. C. 3 đỉnh, 3 cạnh, 3 mặt. D. 4 đỉnh, 8 cạnh, 4 mặt.
Câu 125. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 − ln x.
B. y0 = 1 + ln x.
C. y0 = ln x − 1.
D. y0 = x + ln x.
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
Câu 126. [3-1132d] Cho dãy số (un ) với un =
n2 + 1
A. lim un = 1.
B. Dãy số un khơng có giới hạn khi n → +∞.
1
C. lim un = 0.
D. lim un = .
2
cos n + sin n
Câu 127. Tính lim
n2 + 1
A. 1.
B. −∞.
C. +∞.
D. 0.
1
Câu 128. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2] ∪ [−1; +∞). B. −2 < m < −1.
C. (−∞; −2) ∪ (−1; +∞). D. −2 ≤ m ≤ −1.
1
Câu 129. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (1; +∞).
B. D = R.
C. D = (−∞; 1).
7n − 2n + 1
Câu 130. Tính lim 3
3n + 2n2 + 1
7
B. 0.
A. .
3
2
D. D = R \ {1}.
3
2
C. - .
3
D. 1.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/11 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
3.
C
2.
B
5.
B
6. A
7.
8. A
9.
D
11.
D
D
10.
D
12.
B
13.
14.
B
15. A
16.
17.
D
18. A
B
B
D
21.
22.
D
23. A
24. A
25. A
26. A
27.
B
D
19.
20.
28.
C
D
29. A
30.
D
31. A
32.
D
33.
34.
D
35. A
D
36.
B
37.
C
38.
B
39.
C
41.
C
C
40.
C
42.
B
43.
44.
B
45.
46. A
D
47.
C
C
48.
D
49.
50.
D
51. A
52.
D
53.
B
54.
B
55.
D
56.
B
57.
D
58.
D
59. A
60. A
61. A
62. A
63.
D
64. A
65.
D
66.
B
68. A
1
67.
B
69.
B
70.
C
D
72.
C
74.
76. A
71.
B
73.
B
75.
C
77.
C
78.
D
79.
B
80.
D
81.
B
82.
D
83.
84.
D
85.
86. A
87.
88. A
89.
90. A
91.
92.
93.
B
D
94.
D
B
C
D
C
B
D
95.
96.
C
97.
98.
C
99. A
B
100. A
101.
102. A
103.
D
104. A
105.
D
C
106.
108.
107.
B
110.
C
D
111.
D
113. A
114. A
115. A
117.
B
118. A
119.
120.
C
121. A
122.
C
123.
124. A
125.
126.
D
127.
128.
D
129. A
130.
B
109.
112. A
116.
B
C
2
D
B
C
B
D