Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (824)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (155.5 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có một.
B. Có hai.
C. Có vơ số.
D. Khơng có.
Câu 2. Khối đa diện đều loại {3; 5} có số mặt
A. 30.
B. 20.


4n2 + 1 − n + 2
Câu 3. Tính lim
bằng
2n − 3
A. +∞.
B. 1.

C. 12.

C.


Câu 4. √
Thể tích của tứ diện đều cạnh
√ bằng a
3
3
a 2
a 2
A.
.
B.
.
12
6

3
.
2


a3 2
C.
.
2

D. 8.

D. 2.

a3 2
D.

.
4

Câu 5. Cho
Z hai hàm y Z= f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
B. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
C. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Câu 6. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 6.
B. −5.
C. 5.

D. −6.


Câu 7. Khối đa diện đều loại {5; 3} có số cạnh
A. 12.
B. 30.

D. 20.

2

C. 8.

Câu 8. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 4.
B. 2.
C. −2.

D. −4.

Câu 9. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (2; 2).
B. (0; −2).
C. (1; −3).

D. (−1; −7).

Câu 10. Khối đa diện đều loại {3; 3} có số đỉnh
A. 2.
B. 4.

D. 3.


C. 5.

Câu 11. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.
B. f (x) có giới hạn hữu hạn khi x → a.
x→a

x→a

x→a

x→a

C. lim+ f (x) = lim− f (x) = a.

D. lim f (x) = f (a).
x→a

0

0

0

Câu 12. [3-1122h] Cho hình lăng trụ ABC.A B C có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3

BC là
. Khi đó thể tích khối lăng trụ là
4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
6
12
36
24
Trang 1/10 Mã đề 1


Câu 13. Tính lim
x→5

x2 − 12x + 35

25 − 5x
2
B. .
5

2
D. − .
5
2
ln x
m
Câu 14. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 22.
B. S = 135.
C. S = 32.
D. S = 24.
A. −∞.

C. +∞.

Câu 15. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1637
23
1728
1079

A.
.
B.
.
C.
.
D.
.
4913
68
4913
4913
Câu 16. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là −4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là −3, phần ảo là −4.
D. Phần thực là −3, phần ảo là 4.
Câu 17. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 9 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 3 lần.
D. Tăng gấp 27 lần.
Câu 18. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD

√ là
3
3

3
3
8a 3
8a 3
4a 3
a 3
A.
.
B.
.
C.
.
D.
.
9
3
9
9
x2
Câu 19. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
B. M = e, m = 1.
C. M = e, m = .
D. M = e, m = 0.
A. M = , m = 0.
e
e
Câu 20. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu

A. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 21. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tứ giác.
B. Một hình chóp tam giác và một hình chóp tứ giác.
C. Một hình chóp tứ giác và một hình chóp ngũ giác.
D. Hai hình chóp tam giác.
!
1
1
1
+ ··· +
Câu 22. [3-1131d] Tính lim +
1 1+2
1 + 2 + ··· + n
3
5
A. 2.
B. .
C. +∞.
D. .
2
2

Câu 23. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã


√ cho là


3
πa 3
πa3 6
πa3 3
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
3
6
6
2
Câu 24. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. 2.
C. 1.
D. Vô nghiệm.
Trang 2/10 Mã đề 1


Câu 25. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp

theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 14 năm.
C. 10 năm.
D. 12 năm.
Câu 26. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 5%.
B. 0, 7%.
C. 0, 6%.
D. 0, 8%.
Câu 27. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 6 cạnh, 4 mặt. B. 6 đỉnh, 6 cạnh, 4 mặt. C. 4 đỉnh, 8 cạnh, 4 mặt. D. 3 đỉnh, 3 cạnh, 3 mặt.
Câu 28. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. Vô số.
B. 3.
C. 1.
D. 2.
x−1 y z+1
= =

Câu 29. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.

A. 2x + y − z = 0.
B. 2x − y + 2z − 1 = 0.
C. 10x − 7y + 13z + 3 = 0.
D. −x + 6y + 4z + 5 = 0.
√3
4
Câu 30. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
7
2
5
5
A. a 3 .
B. a 3 .
C. a 3 .
D. a 8 .
1
Câu 31. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = −3, m = 4.
B. −3 ≤ m ≤ 4.
C. m = 4.
D. m = −3.
Câu 32. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 2ac
.
B.

.
C.
.
A.
c+2
c+2
c+3
x+2
bằng?
Câu 33. Tính lim
x→2
x
A. 0.
B. 1.
C. 3.

D.

3b + 3ac
.
c+1

D. 2.

Câu 34. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a

a3 15
a3 15
a3 5

a3
A.
.
B.
.
C.
.
D.
.
5
25
25
3

Câu 35. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 3 nghiệm.
B. 1 nghiệm.
C. 2 nghiệm.
D. Vô nghiệm.
Câu 36. [1] Đạo hàm của làm số y = log x là
1
1
1
ln 10
A.
.
B. y0 = .
C. y0 =
.
D. y0 =

.
10 ln x
x
x ln 10
x
Câu 37. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1202 m.
B. 2400 m.
C. 1134 m.
D. 6510 m.
Câu 38. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. 9.
B. .
C. 6.
D. .
2
2
Trang 3/10 Mã đề 1


Câu 39. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
z
x+1 y−5
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng

d:
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 2; −1).
B. ~u = (1; 0; 2).
C. ~u = (2; 1; 6).
D. ~u = (3; 4; −4).
Câu 40. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 0.
B. −3.
C. −6.
D. 3.
2−n
Câu 41. Giá trị của giới hạn lim
bằng
n+1
A. −1.
B. 2.
C. 1.
D. 0.
Câu 42. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 − ln x.
B. y0 = ln x − 1.

C. y0 = x + ln x.

D. y0 = 1 + ln x.


Câu 43. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
ab
1
1
.
B. √
.
C. 2
.
A. √
.
D. √
2
a +b
2 a2 + b2
a2 + b2
a2 + b2
Câu 44. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e2 − 2; m = e−2 + 2.
B. M = e−2 + 2; m = 1.
C. M = e−2 − 2; m = 1.
D. M = e−2 + 1; m = 1.
x+3
nghịch biến trên khoảng
Câu 45. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x−m
(0; +∞)?
A. 1.

B. 3.
C. 2.
D. Vô số.
x−1
Câu 46. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
√ có độ dài bằng

√ đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB
A. 2 3.
B. 2.
C. 2 2.
D. 6.
Câu 47. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m < .
C. m > .
D. m ≤ .
4
4
4
4
Câu 48.
√ [4-1246d] Trong tất cả các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất của |z|

A. 3.
B. 1.
C. 5.
D. 2.



x=t




Câu 49. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
A. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
B. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
4
4
9
9
2

2
2
2
2
2
C. (x + 3) + (y + 1) + (z + 3) = .
D. (x − 3) + (y + 1) + (z + 3) = .
4
4


d = 90 , ABC
d = 30 ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 50. Cho hình chóp S .ABC có BAC
Thể tích khối chóp S .ABC là



3
3
3

a
2
a
3
a
3
A. 2a2 2.
B.

.
C.
.
D.
.
24
12
24
Câu 51. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
! của A lên BC là
!
5
8
7
A. (2; 0; 0).
B.
; 0; 0 .
C.
; 0; 0 .
D.
; 0; 0 .
3
3
3
Trang 4/10 Mã đề 1


[ = 60◦ , S O
Câu 52. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD

vng góc
√ BC) bằng

√ với mặt đáy và S O = a. Khoảng cách từ O đến (S

a 57
2a 57
a 57
A.
.
B. a 57.
C.
.
D.
.
17
19
19
Câu 53. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng



b a2 + c2
a b2 + c2
c a2 + b2
abc b2 + c2
.

B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
x+1
Câu 54. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. 1.
B. .
C. .
D. .
6
2
3
Câu 55. Hàm số nào sau đây khơng có cực trị
x−2
1
B. y = x3 − 3x.
C. y = x4 − 2x + 1.

D. y =
.
A. y = x + .
x
2x + 1
Câu 56. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (2; +∞).
B. (0; 2).
C. R.
D. (−∞; 1).
Câu 57.
Z Các khẳng định nào sau
Z đây là sai?
A.
Z
C.

f (x)dx = F(x) +C ⇒
!0
f (x)dx = f (x).

f (u)dx = F(u) +C. B.

Z
Z

D.

k f (x)dx = k


Z

f (x)dx, k là hằng số.
Z
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.

Câu 58. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m < 3.
C. m ≥ 3.
D. m > 3.
Câu 59. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m ≤ 3.
C. m < 3.
D. m ≥ 3.
Câu 60. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 7 mặt.
B. 8 mặt.
C. 6 mặt.

D. 9 mặt.

Câu 61. Cho z là nghiệm của phương trình√ x2 + x + 1 = 0. Tính P =√z4 + 2z3 − z
−1 − i 3
−1 + i 3
.

C. P =
.
D. P = 2.
A. P = 2i.
B. P =
2
2
Câu 62. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5; 2}.
B. {3}.
C. {5}.
D. {2}.
Câu 63. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
C là


3
a 3
a3
a3 3
A.
.
B.
.
C.
.
D. a3 .
2

3
6
Câu 64.
Z Trong các khẳng định sau, khẳng định nào sai? Z
1
A.
0dx = C, C là hằng số.
B.
dx = ln |x| + C, C là hằng số.
Z
Z x
xα+1
C.
dx = x + C, C là hằng số.
D.
xα dx =
+ C, C là hằng số.
α+1
Câu 65. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 1.
B. −2 + 2 ln 2.
C. e.

D. 4 − 2 ln 2.
Trang 5/10 Mã đề 1


log2 240 log2 15

+ log2 1 bằng

log3,75 2 log60 2
B. 3.
C. 1.

Câu 66. [1-c] Giá trị biểu thức
A. 4.

D. −8.

Câu 67. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Z
u0 (x)
B.
dx = log |u(x)| + C.
u(x)
C. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.

Câu 68. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a
a 38
3a 38
3a 58

A.
.
B.
.
C.
.
D.
.
29
29
29
29
Câu 69. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 91cm3 .
B. 48cm3 .
C. 84cm3 .
D. 64cm3 .
Câu 70. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim− f (x) = f (b).
B. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a

x→b

x→a

x→b


C. lim− f (x) = f (a) và lim− f (x) = f (b).

x→a

x→b

x→a

x→b

D. lim− f (x) = f (a) và lim+ f (x) = f (b).

Câu 71. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (1; +∞).
B. (−∞; 1).
C. (−1; 1).
D. (−∞; −1).
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 72. [3-12217d] Cho hàm số y = ln
x+1
0
y
0
y
A. xy = −e + 1.
B. xy = e − 1.
C. xy0 = −ey − 1.
D. xy0 = ey + 1.
3a

Câu 73. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng √
a 2
a
2a
a
A.
.
B. .
C.
.
D. .
3
4
3
3
tan x + m
Câu 74. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (1; +∞).
B. (−∞; 0] ∪ (1; +∞). C. (−∞; −1) ∪ (1; +∞). D. [0; +∞).
Câu 75. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).

A. [−1; 3].
B. [−3; 1].
C. (−∞; −3].
D. [1; +∞).
Câu 76. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC) một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √

a3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
4
4
8
12
Câu 77. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.
Trang 6/10 Mã đề 1



5 13

A. 26.
B.
.
13
Câu 78. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 2.
B. 3.





C. 2 13.

D.

C. +∞.

2.

D. 1.
2

2

sin x
Câu 79. [3-c]
+ 2cos x √
lần lượt là

√ Giá trị nhỏ nhất và√giá trị lớn nhất của hàm số f (x) = 2
B. 2 2 và 3.
C. 2 và 3.
D. 2 và 3.
A. 2 và 2 2.

Câu 80. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (−∞; 2).
C. Hàm số đồng biến trên khoảng (0; +∞).
D. Hàm số đồng biến trên khoảng (0; 2).
Câu 81. Khối đa diện đều loại {3; 4} có số cạnh
A. 10.
B. 6.

C. 12.

D. 8.

Câu 82. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 16 tháng.
B. 17 tháng.
C. 15 tháng.
D. 18 tháng.
Câu 83. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.

B. Tăng gấp đôi.
C. Tăng gấp 4 lần.
D. Tăng gấp 6 lần.
Câu 84. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 13.
B. 13.
C. 2020.
D. log2 2020.
Câu 85. Khối đa diện đều loại {5; 3} có số đỉnh
A. 8.
B. 12.

C. 30.

D. 20.

Câu 86. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng



a 3
2a 3
a 3
.
B.
.
C. a 3.
.
D.

A.
2
3
2
d = 300 .
Câu 87. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
0
Độ dài cạnh bên
√ CC = 3a. Thể tích V của khối lăng trụ đã cho.

3

3a 3
a3 3
3
3
A. V =
.
B. V = 6a .
C. V = 3a 3.
D. V =
.
2
2
Câu 88. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n2 lần.
C. n3 lần.
D. 2n3 lần.

Câu 89. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 3.

B. 1.

C. 4.

D. 2.

Câu 90. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≤ 3.
B. −3 ≤ m ≤ 3.
C. −2 ≤ m ≤ 2.
D. m ≥ 3.
Trang 7/10 Mã đề 1


x+1
Câu 91. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. .
B. .
C. 3.

D. 1.
3
4
Z 3
a
x
a
Câu 92. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = −2.
B. P = 28.
C. P = 16.
D. P = 4.
Câu 93. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = R \ {0}.

C. D = (0; +∞).
D. D = R \ {1}.

Câu 94. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.



√ tích khối chóp S .ABC3 √
3
a 2
a3 6
a3 6
a 6
.
B.
.
C.
.
D.
.
A.
18
6
6
36
x−3
Câu 95. [1] Tính lim
bằng?
x→3 x + 3
A. +∞.
B. −∞.
C. 0.
D. 1.
Câu 96. Tứ diện đều thuộc loại
A. {3; 3}.
B. {5; 3}.


C. {4; 3}.

D. {3; 4}.

Câu 97. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục ảo.
B. Hai đường phân giác y = x và y = −x của các góc tọa độ.
C. Đường phân giác góc phần tư thứ nhất.
D. Trục thực.
π
Câu 98. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu thức T = a + b 3.


A. T = 4.
B. T = 2 3.
C. T = 2.
D. T = 3 3 + 1.
Câu 99. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 22016 .
B. 0.
C. e2016 .
D. 1.
Câu 100. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m ≥ 0.
B. m > 1.
C. m > 0.


D. m > −1.

Câu 101. Cho hình chóp S .ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối

√ chóp S .ABCD là

3
3
a 6
a 3
a3 3
a3 2
A.
.
B.
.
C.
.
D.
.
48
24
48
16
Câu 102. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền

ra.
A. 210 triệu.
B. 216 triệu.
C. 212 triệu.
D. 220 triệu.
2n + 1
Câu 103. Tính giới hạn lim
3n + 2
2
1
3
A. .
B. 0.
C. .
D. .
3
2
2
Trang 8/10 Mã đề 1





x = 1 + 3t




Câu 104. [1232h] Trong không gian Oxyz, cho đường thẳng d : 

y = 1 + 4t . Gọi ∆ là đường thẳng đi




z = 1
qua điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là











x
=
1
+
7t
x
=
−1
+
2t

x
=
1
+
3t
x = −1 + 2t
















A. 
.
B. 
D. 
y=1+t
y = −10 + 11t . C. 
y = 1 + 4t .
y = −10 + 11t .

















z = 1 + 5t
z = 6 − 5t
z = 1 − 5t
z = −6 − 5t
Câu 105. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất
điểm đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 8 m.
B. 24 m.
C. 12 m.
D. 16 m.

x2 + 3x + 5
Câu 106. Tính giới hạn lim
x→−∞

4x − 1
1
1
B. 0.
C. 1.
D. − .
A. .
4
4
n−1
Câu 107. Tính lim 2
n +2
A. 1.
B. 0.
C. 3.
D. 2.
Câu 108. Phát biểu nào sau đây là sai?
A. lim qn = 0 (|q| > 1).
1
C. lim k = 0.
n
1
Câu 109. Hàm số y = x + có giá trị cực đại là
x
A. 1.
B. −1.

1
= 0.
n

D. lim un = c (un = c là hằng số).
B. lim

C. −2.

D. 2.

x2 −3x+8

Câu 110. [2] Tổng các nghiệm của phương trình 3
= 92x−1 là
A. 8.
B. 7.
C. 5.
D. 6.
log(mx)
= 2 có nghiệm thực duy nhất
Câu 111. [3-1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m < 0.
B. m < 0 ∨ m = 4.
C. m ≤ 0.
D. m < 0 ∨ m > 4.
Câu 112. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n lần.
B. n3 lần.
C. 3n3 lần.
D. n2 lần.
x2 − 9
Câu 113. Tính lim

x→3 x − 3
A. +∞.
B. 3.
C. −3.
D. 6.
Câu 114. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (I) đúng.
B. Cả hai đều đúng.

C. Chỉ có (II) đúng.

D. Cả hai đều sai.

Câu 115. Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
A. Tứ diện đều.
B. Nhị thập diện đều. C. Thập nhị diện đều. D. Bát diện đều.
Câu 116. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 0.
B. +∞.

C. 2.

D. 1.
Trang 9/10 Mã đề 1



Câu 117. √
Tính mơ đun của số phức√z biết (1 + 2i)z2 = 3 + 4i.
4
B. |z| = 5.
C. |z| = 5.
A. |z| = 5.


D. |z| = 2 5.

Câu 118. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất

√ của hàm số. Khi đó tổng
√M + m
A. 7 3.
B. 8 3.
C. 8 2.
D. 16.
Câu 119. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm cạnh.
B. Hai cạnh.
C. Ba cạnh.

D. Bốn cạnh.

Câu 120. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
B. F(x) = G(x) trên khoảng (a; b).

C. Cả ba câu trên đều sai.
D. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
2
x
Câu 121. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m
2
√ + 1)2 trên [0; 1] bằng √
D. m = ± 3.
A. m = ±3.
B. m = ±1.
C. m = ± 2.

6
Câu 122. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2 f (x3 ) − √
. Tính
3x
+
1
Z 1
f (x)dx.
0

A. 4.

B. −1.

C. 6.

D. 2.


Câu 123. Tìm giá trị nhỏ nhất của hàm số y = (x − 2x + 3) − 7
A. −3.
B. −5.
C. Không tồn tại.
2

2

D. −7.

Câu 124. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

a3 6
a3 3
a3 6
a3 6
.
B.
.
C.
.
D.
.
A.
48
8
24

24
Câu 125. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
D. Hàm số nghịch biến trên khoảng (−2; 1).
Câu 126. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 2.
B. 1.
C. 3.

D. 0.

Câu 127. Cho hàm số y = x − 3x − 1. Mệnh đề nào sau đây đúng?
A. Hàm số đồng biến trên khoảng (1; 2).
B. Hàm số nghịch biến trên khoảng (1; +∞).
C. Hàm số nghịch biến trên khoảng (0; 1).
D. Hàm số nghịch biến trên khoảng (−∞; 0).
3

2

Câu 128. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị
" nhỏ! nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới đây?
5
5
A.
;3 .
B. 2; .

C. [3; 4).
D. (1; 2).
2
2
Câu 129. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. .
B. 3.
C. 2e.
e
Câu 130. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. [6, 5; +∞).
B. (−∞; 6, 5).
C. (4; +∞).


ab.

D. 2e + 1.
D. (4; 6, 5].

- - - - - - - - - - HẾT- - - - - - - - - Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B


2.

3.

B

4. A

5.

D

6.

B
B

7.

B

8.

9.

B

10.


B

12.

B

11.
13.

D

C

14.

B

C

16.

15. A
17.

D

18. A

19.


D

20.

21.

D

22. A

D
C

23. A

24.

B

25. A

26.

B

27. A

28.

29.


C

31. A
33.

D

35.

C

37.
39.

30.

B

32.

B

34.

B

36.
D


B

40.

D
B

42.

43.

B

44.

45.

B

46. A

47.

D

48.

49.

D


50.

51.
B

D

57. A

C
D
B
B

56.

B

59.

D

60.

61.

D

62.


63. A
C
B
1

C

54.
58.

65.

D

52.

C

55.

67.

C

38.

41. A

53.


D

C
D
C

64.

D

66.

D

68.

D


69.

D

70. A

71.

C


72.

73.

C

74. A

75.

B

76.

77.

B

78. A

79.

B

80.

81.

D


86.

87. A

88.

89. A

90.

B

99.

B

101.

D

98. A
100.
C

104.

105.

D


B
D

113.

112.

B

118.

C
D

120. A

C

122. A

B
C

125. A
127.

B

116. A


B

123.

D

110.
114.

C

119.

B

108. A
C

115.

C

106.

B

109.

D


102.

103. A

129.

B

96. A

C

97.

121.

C

94. A

95.

117.

B

92.

B


93. A

111.

D

84. A

85.

107.

C

82. A

C

83. A

91.

B

124.

D

126.


D

128. A

C

130.

B

2

D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×