TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
x
x+1
x−2 x−1
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3].
B. (−∞; −3).
C. [−3; +∞).
D. (−3; +∞).
d = 30◦ , biết S BC là tam giác đều
Câu 2. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
13
16
9
26
Câu 3. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng nhau?
A. 6.
B. 8.
C. 4.
D. 3.
Câu 1. [4-1212d] Cho hai hàm số y =
Câu 4. [4-1246d] Trong tất cả √
các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất
√ của |z|
A. 2.
B. 5.
C. 1.
D. 3.
Câu 5. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −2.
B. m = 0.
C. m = −1.
D. m = −3.
Câu 6. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 3ac
3b + 2ac
.
B.
.
C.
.
D.
.
A.
c+3
c+2
c+2
c+1
Câu 7. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m > .
C. m ≤ .
D. m < .
4
4
4
4
√
Câu 8. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể tích
khối nón đã cho
√ là
√
√
√
πa3 3
πa3 3
πa3 3
πa3 6
.
B. V =
.
C. V =
.
D. V =
.
A. V =
6
3
6
2
x−2
Câu 9. Tính lim
x→+∞ x + 3
2
A. −3.
B. − .
C. 1.
D. 2.
3
1 − xy
Câu 10. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.
√
√
√
9 11 − 19
9 11 + 19
2 11 − 3
18 11 − 29
A. Pmin =
. B. Pmin =
. C. Pmin =
.
D. Pmin =
.
9
9
3
21
x−1
Câu 11. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
AB có độ dài bằng
√ đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng √
√
B. 2.
C. 6.
D. 2 3.
A. 2 2.
Câu 12. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 10 mặt.
C. 6 mặt.
D. 4 mặt.
Câu 13. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 10 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Trang 1/10 Mã đề 1
Câu 14. Mệnh đề nào sau đây sai?
A. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).
B. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
C. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
!0
Z
D.
f (x)dx = f (x).
Câu 15. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.
√
√
√
√
5 13
A. 2 13.
B. 2.
C. 26.
D.
.
13
!
5 − 12x
Câu 16. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. Vô nghiệm.
B. 1.
C. 2.
D. 3.
Câu 17. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 24.
B. S = 22.
ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
C. S = 32.
D. S = 135.
Câu 18. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. .
B.
.
C. 7.
D. 5.
2
2
Câu 19. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của hình chóp S .ABCD với√mặt phẳng (AIC) có diện√tích là
√
2
a 7
11a2
a2 2
a2 5
A.
.
B.
.
C.
.
D.
.
8
32
4
16
Câu 20. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −5.
B. x = 0.
C. x = −2.
D. x = −8.
Câu 21. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
√
1
C. 25.
D. 5.
A. 5.
B. .
5
Câu 22.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nàoZsai?
√
A.
Z
C.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
f (x)g(x)dx =
B.
Z
D.
f (x)dx g(x)dx.
Z
Z
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Câu 23. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
B. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
0
D. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Câu 24. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
A. .
B.
.
C. 1.
2
2
D. 2.
Trang 2/10 Mã đề 1
Câu 25. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 8 m.
B. 12 m.
C. 24 m.
D. 16 m.
√
Câu 26. √
Thể tích của khối lập phương có cạnh bằng a 2
3
√
√
2a 2
A.
.
B. V = a3 2.
C. 2a3 2.
D. V = 2a3 .
3
√
Câu 27. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 63.
C. 62.
D. Vô số.
Câu 28. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 3.
B. 1.
C. 2.
D. 4.
Câu 29. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.
B. Câu (I) sai.
C. Khơng có câu nào D. Câu (II) sai.
sai.
3
2
2
Câu 30. Tìm m để hàm số y = x − 3mx + 3m có 2 điểm cực trị.
A. m < 0.
B. m , 0.
C. m = 0.
D. m > 0.
Câu 31. Khối đa diện đều loại {4; 3} có số đỉnh
A. 4.
B. 8.
C. 6.
D. 10.
Câu 32. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác S AB đều và nằm trong mặt
Thể tích khối chóp
√ phẳng vng góc với 3(ABCD).
√
√ S .ABCD là
3
3
√
a 2
a 3
a 3
.
C.
.
D.
.
A. a3 3.
B.
2
4
2
Câu 33. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = −18.
B. y(−2) = 2.
C. y(−2) = 22.
D. y(−2) = 6.
Z 1
6
2
3
Câu 34. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
. Tính
f (x)dx.
0
3x + 1
A. 4.
B. −1.
Câu 35. [1-c] Giá trị của biểu thức
A. 2.
B. −4.
C. 2.
log7 16
log7 15 − log7
15
30
D. 6.
bằng
C. 4.
D. −2.
Trang 3/10 Mã đề 1
Câu 36. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 37. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4
√
√
√
√
a3 3
a3 3
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
6
12
36
24
2x + 1
Câu 38. Tính giới hạn lim
x→+∞ x + 1
1
A. 1.
B. −1.
C. 2.
D. .
2
Câu 39. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√ của hàm số. Khi đó tổng M + m
√
√
A. 8 2.
B. 16.
C. 7 3.
D. 8 3.
Câu 40. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
D. 27.
A. 18.
B. 12.
C.
2
Câu 41. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 8 cạnh, 4 mặt. B. 3 đỉnh, 3 cạnh, 3 mặt. C. 4 đỉnh, 6 cạnh, 4 mặt. D. 6 đỉnh, 6 cạnh, 4 mặt.
Câu 42. Khối đa diện đều loại {3; 3} có số mặt
A. 2.
B. 4.
C. 5.
D. 3.
Câu 43. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 22016 .
B. 1.
C. 0.
D. e2016 .
Câu 44. Khối đa diện đều loại {3; 4} có số mặt
A. 6.
B. 12.
C. 10.
D. 8.
Câu 45. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
A. β = a β .
B. aα+β = aα .aβ .
C. aα bα = (ab)α .
D. aαβ = (aα )β .
a
Câu 46. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m > 3.
C. m < 3.
D. m ≤ 3.
√
Câu 47. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √
√
√
3
a 6
a 6
a3 6
a3 2
A.
.
B.
.
C.
.
D.
.
6
18
36
6
Câu 48. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C) và (A0C 0 D) bằng
√
√
√
√
2a 3
a 3
a 3
A. a 3.
B.
.
C.
.
D.
.
2
2
3
Trang 4/10 Mã đề 1
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = −e − 1.
C. xy0 = ey + 1.
D. xy0 = ey − 1.
Câu 49. [3-12217d] Cho hàm số y = ln
A. xy0 = −ey + 1.
Câu 50. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
√
√
√
√
20 3
14 3
B.
.
C.
.
D. 8 3.
A. 6 3.
3
3
1
Câu 51. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e + 1.
B. xy = e − 1.
C. xy0 = −ey − 1.
D. xy0 = ey + 1.
Câu 52. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
1
ab
ab
.
D.
A. √
.
B. √
.
C. 2
.
√
a + b2
2 a2 + b2
a2 + b2
a2 + b2
Câu 53. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
!
! của A lên BC là
8
7
5
; 0; 0 .
; 0; 0 .
; 0; 0 .
A.
B.
C.
D. (2; 0; 0).
3
3
3
Câu 54. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 4}.
B. {5; 3}.
C. {3; 3}.
D. {4; 3}.
Câu 55. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Nhị thập diện đều. B. Tứ diện đều.
C. Thập nhị diện đều.
D. Bát diện đều.
Câu 56. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (−∞; +∞).
B. (1; 2).
C. [−1; 2).
D. [1; 2].
Câu 57. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng 2n+1.
B. Số đỉnh của khối chóp bằng 2n + 1.
C. Số mặt của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh của khối chóp bằng 2n.
Câu 58. [1] Đạo hàm của làm số y = log x là
ln 10
1
1
A. y0 =
.
B. y0 =
.
C. y0 = .
x
x ln 10
x
x
x
Câu 59. [2] Tổng các nghiệm của phương trình 9 − 12.3 + 27 = 0 là
A. 3.
B. 12.
C. 27.
D. 10.
Câu 60. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 1.
B. 2.
C. 3.
D. 0.
D.
1
.
10 ln x
Câu 61. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 2020.
B. log2 13.
C. 13.
D. 2020.
Câu 62. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Trang 5/10 Mã đề 1
Các mệnh đề đúng là
A. Cả ba mệnh đề.
B. (I) và (II).
C. (I) và (III).
D. (II) và (III).
2
Câu 63. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
2
1
1
B. 3 .
C. √ .
A. 3 .
2e
e
2 e
D.
1
.
e2
Câu 64. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
B. .
C. 1.
D. 3.
A. .
2
2
Câu 65. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5}.
B. {3}.
C. {5; 2}.
D. {2}.
Câu 66. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng số mặt của khối chóp.
B. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
C. Số đỉnh của khối chóp bằng số mặt của khối chóp.
D. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
Câu 67. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 1.
B. e.
C. 4 − 2 ln 2.
D. −2 + 2 ln 2.
1
5
Câu 68. [2] Tập xác định của hàm số y = (x − 1) là
A. D = R.
B. D = (−∞; 1).
C. D = R \ {1}.
D. D = (1; +∞).
2mx + 1
1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. −5.
B. 0.
C. −2.
D. 1.
π
Câu 70. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2
√
√
1 π3
2 π4
3 π6
A.
e .
B. e .
C. 1.
D.
e .
2
2
2
Câu 69. Giá trị lớn nhất của hàm số y =
Câu 71. [2] Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 2√
A. m = ±3.
B. m = ± 2.
C. m = ±1.
D. m = ± 3.
x2 − 5x + 6
x→2
x−2
B. 1.
Câu 72. Tính giới hạn lim
A. 5.
Câu 73. Hàm số y =
A. x = 2.
x − 3x + 3
đạt cực đại tại
x−2
B. x = 0.
C. −1.
D. 0.
C. x = 1.
D. x = 3.
2
Câu 74. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 10 năm.
C. 11 năm.
D. 14 năm.
Câu 75. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối bát diện đều.
B. Khối lăng trụ tam giác.
C. Khối lập phương.
D. Khối tứ diện.
Câu 76. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −21.
B. P = 10.
C. P = 21.
D. P = −10.
Trang 6/10 Mã đề 1
Câu 77. Phát biểu nào sau đây là sai?
A. lim un = c (un = c là hằng số).
B. lim qn = 0 (|q| > 1).
1
1
D. lim = 0.
C. lim k = 0.
n
n
Câu 78. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 9 năm.
B. 7 năm.
C. 8 năm.
D. 10 năm.
Câu 79. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; 8).
B. A(−4; −8)(.
C. A(4; 8).
D. A(4; −8).
Câu 80. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Đường phân giác góc phần tư thứ nhất.
B. Hai đường phân giác y = x và y = −x của các góc tọa độ.
C. Trục thực.
D. Trục ảo.
Câu 81. Bát diện đều thuộc loại
A. {3; 3}.
B. {5; 3}.
C. {4; 3}.
D. {3; 4}.
Câu 82. Hàm số nào sau đây khơng có cực trị
1
x−2
.
B. y = x3 − 3x.
C. y = x + .
D. y = x4 − 2x + 1.
A. y =
2x + 1
x
Z 1
Câu 83. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0
1
.
C. 0.
2
Câu 84. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Ba mặt.
B. Hai mặt.
C. Một mặt.
A. 1.
D.
B.
1
.
4
D. Bốn mặt.
Câu 85. Cho hàm số y = x − 2x + x + 1. Mệnh
! đề nào dưới đây đúng?
!
1
1
A. Hàm số nghịch biến trên khoảng −∞; .
B. Hàm số nghịch biến trên khoảng ; 1 .
3
! 3
1
C. Hàm số đồng biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng (1; +∞).
3
3
2
Câu 86. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; 3).
B. A0 (−3; 3; 1).
C. A0 (−3; −3; −3).
D. A0 (−3; 3; 3).
2
2
sin x
Câu 87. [3-c]
+ 2cos x lần lượt là
√ Giá trị nhỏ nhất và√giá trị lớn nhất của hàm√số f (x) = 2
B. 2 2 và 3.
C. 2 và 3.
D. 2 và 3.
A. 2 và 2 2.
Câu 88. Phát biểu nào sau đây là sai?
A. lim qn = 1 với |q| > 1.
1
C. lim k = 0 với k > 1.
n
B. lim un = c (Với un = c là hằng số).
1
D. lim √ = 0.
n
Câu 89. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 3
a3 5
a3 5
A.
.
B.
.
C.
.
D.
.
12
12
6
4
Câu 90. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 46cm3 .
B. 27cm3 .
C. 72cm3 .
D. 64cm3 .
Trang 7/10 Mã đề 1
Câu 91. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 5.
B. V = 6.
C. V = 3.
D. V = 4.
Câu 92. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai cạnh.
B. Ba cạnh.
C. Năm cạnh.
D. Bốn cạnh.
Câu 93. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 1200 cm2 .
C. 120 cm2 .
D. 160 cm2 .
π
Câu 94. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3
√
trị của biểu thức T = a + b 3.
√
√
A. T = 4.
B. T = 3 3 + 1.
C. T = 2.
D. T = 2 3.
x+2
Câu 95. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 1.
B. 3.
C. Vô số.
D. 2.
Câu 96. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 97. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
√
B. y = loga x trong đó a = 3 − 2.
A. y = log π4 x.
D. y = log 14 x.
C. y = log √2 x.
√
Câu 98. √Xác định phần ảo của số phức z = ( 2 + 3i)2
√
A. −6 2.
B. 7.
C. −7.
D. 6 2.
Câu 99. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1637
23
1728
1079
A.
.
B.
.
C.
.
D.
.
4913
68
4913
4913
Câu 100. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng
√
√
a 2
a 2
A.
.
B.
.
C. a 2.
D. 2a 2.
4
2
1
Câu 101. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 ≤ m ≤ −1.
B. (−∞; −2] ∪ [−1; +∞). C. −2 < m < −1.
D. (−∞; −2) ∪ (−1; +∞).
[ = 60◦ , S A ⊥ (ABCD).
Câu 102. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√
√ S C là a. Thể tích khối chóp S .ABCD là
3
3
3
√
a 2
a 3
a
2
A.
.
B.
.
C. a3 3.
D.
.
4
6
12
Câu 103. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3.
Tính f (2) + f (4)?
A. 11.
B. 4.
C. 10.
D. 12.
Câu 104. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ Thể tích khối chóp S 3.ABC
√ là
√
√
3
a 3
a3 3
a3 3
a 2
A.
.
B.
.
C.
.
D.
.
12
6
4
12
Trang 8/10 Mã đề 1
Câu 105. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−1; 3].
B. [−3; 1].
C. [1; +∞).
D. (−∞; −3].
d = 120◦ .
Câu 106. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
B. 4a.
C. 3a.
D. 2a.
A.
2
Câu 107. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 3 lần.
B. Tăng gấp 9 lần.
C. Tăng gấp 18 lần.
D. Tăng gấp 27 lần.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥
Câu 108. Cho hình chóp S .ABC có BAC
(ABC). Thể tích khối chóp S .ABC√là
√
√
√
a3 2
a3 3
a3 3
2
A. 2a 2.
B.
.
C.
.
D.
.
24
12
24
!4x
!2−x
3
2
≤
là
Câu 109. Tập các số x thỏa mãn
3 #
2
"
!
"
!
#
2
2
2
2
A.
; +∞ .
B. −∞; .
C. − ; +∞ .
D. −∞; .
5
3
3
5
Câu 110. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối lập phương.
C. Khối 12 mặt đều.
D. Khối tứ diện đều.
Câu 111. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là −4.
B. Phần thực là −3, phần ảo là 4.
C. Phần thực là 3, phần ảo là −4.
D. Phần thực là 3, phần ảo là 4.
Câu 112. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị nhỏ nhất của biểu thức P = x + 2y thuộc tập nào dưới
" đây?
!
"
!
5
5
A. [3; 4).
B. (1; 2).
C.
;3 .
D. 2; .
2
2
Câu 113. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
A. 2e.
B. 2e + 1.
C. 3.
Câu 114. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lăng trụ.
B. Hình tam giác.
C. Hình lập phương.
Câu 115. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − 2 .
B. − .
C. − .
e
e
2e
Câu 116.
Các khẳng định nào Z
sau đây là sai?
Z
Z
D.
2
.
e
D. Hình chóp.
D. −e.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C. B.
f (x)dx = F(x) +C ⇒
!0
Z
Z
Z
C.
k f (x)dx = k
f (x)dx, k là hằng số.
D.
f (x)dx = f (x).
A.
√
ab.
Z
f (u)dx = F(u) +C.
Câu 117. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của
P = xy + x + 2y + 17
A. −12.
B. −5.
C. −15.
D. −9.
Câu 118. Cho hình chóp S .ABCD có√đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp √
S .ABCD là
3
3
3
2a
4a 3
2a 3
4a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Trang 9/10 Mã đề 1
Câu 119. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều.
C. Khối 12 mặt đều.
D. Khối 20 mặt đều.
Câu 120. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m ≥ .
C. m ≤ .
D. m < .
4
4
4
4
Câu 121. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là
√
√
a3 3
a3
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
8
12
4
4
mx − 4
Câu 122. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 67.
B. 34.
C. 26.
D. 45.
Câu 123. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim− f (x) = f (b).
B. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim+ f (x) = f (a) và lim− f (x) = f (b).
D. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→b
x→a
x→b
Câu 124. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 125. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
z
x+1 y−5
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
d:
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 1; 6).
B. ~u = (3; 4; −4).
C. ~u = (2; 2; −1).
D. ~u = (1; 0; 2).
x−3
bằng?
Câu 126. [1] Tính lim
x→3 x + 3
A. 1.
B. −∞.
C. 0.
D. +∞.
8
Câu 127. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 81.
B. 82.
C. 64.
D. 96.
Câu 128. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
√ góc với đáy, S C = a 3. Thể tích khối chóp S 3.ABCD là
√
3
a 3
a
a3 3
3
A.
.
B. a .
C.
.
D.
.
3
3
9
Câu 129. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị nhỏ nhất trên K.
B. f (x) có giá trị lớn nhất trên K.
C. f (x) xác định trên K.
D. f (x) liên tục trên K.
q
2
Câu 130. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x + log23 x + 1 + 4m −
√ i
h
1 = 0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [0; 1].
C. m ∈ [0; 2].
D. m ∈ [−1; 0].
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
2. A
3.
D
4. A
5. A
6.
C
7.
C
8.
9.
C
10.
C
12.
C
D
11.
C
13.
15.
14. A
D
17.
16.
B
18. A
C
20.
19. A
C
21.
22.
D
B
24.
23. A
25.
D
D
C
26.
27.
C
28. A
29.
C
30.
31.
B
B
32.
B
33. A
D
34. A
35.
B
36.
C
37.
B
38.
C
39.
B
40. A
41.
C
42.
43.
C
44.
45. A
47.
48.
B
D
B
55.
D
B
54.
B
58.
B
60.
59. A
B
63.
D
65. A
67.
52.
56. A
C
57.
D
50. A
53. A
61.
D
46. A
49.
51.
B
62.
B
64.
B
66.
68.
B
1
D
C
D
69.
70. A
B
71.
C
72.
C
73.
C
74.
C
75.
77.
D
76. A
78. A
B
79.
80.
C
D
81.
B
82. A
83.
B
84.
D
85.
B
86.
D
87.
B
88. A
89. A
90.
B
B
91.
D
92.
93.
D
94. A
95.
D
96.
97.
98.
C
99. A
100.
101. A
D
B
106. A
D
109.
D
104.
B
107.
111.
D
102. A
103.
105.
B
108.
B
110.
C
B
D
C
112.
113.
C
114.
B
115.
C
116.
B
118.
117. A
119.
D
120.
121. A
123.
125.
122.
C
C
B
124. A
D
127. A
129.
D
D
126.
C
128.
C
130.
2
D