Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (533)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (155.92 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Phần thực √
và phần ảo của số phức
√ z=
phần ảo là 1 − √
3.
A. Phần thực là 2, √
C. Phần thực là 1 − 2, phần ảo là − 3.



2 − 1 − 3i lần lượt l√

B. Phần thực là √2 − 1, phần ảo là √
3.
D. Phần thực là 2 − 1, phần ảo là − 3.

Câu 2. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 5.
B. 0, 2.
C. 0, 3.
D. 0, 4.


Câu 3. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm hình chóp tam giác đều, khơng có tứ diện đều.
B. Một tứ diện đều và bốn hình chóp tam giác đều.
C. Năm tứ diện đều.
D. Bốn tứ diện đều và một hình chóp tam giác đều.
Câu 4. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 16 tháng.
B. 18 tháng.
C. 17 tháng.
D. 15 tháng.
Câu 5. [2] Tìm m để giá trị nhỏ nhất √
của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 2
A. m = ±1.
B. m = ± 3.
C. m = ± 2.
D. m = ±3.
Câu 6. [12221d] Tính tổng tất cả các nghiệm của phương trình x + 1 = 2 log2 (2 x + 3) − log2 (2020 − 21−x )
A. log2 2020.
B. 13.
C. 2020.
D. log2 13.
Câu 7. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3

a3
A. a3 .
B.
.
C.
.
D.
.
24
12
6
Câu 8. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 3.
B. 12.
C. 27.
D. 10.


Câu 9.√Tìm giá trị lớn nhất của hàm
−x
√ số y = x + 3 + 6 √
A. 2 3.
B. 2 + 3.
C. 3 2.
D. 3.
!2x−1
!2−x
3
3
Câu 10. Tập các số x thỏa mãn



5
5
A. [3; +∞).
B. (+∞; −∞).
C. (−∞; 1].
D. [1; +∞).
Câu 11. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 2.
B. −1.
C. 6.
Câu 12. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. .
B. 2e.
C. 2e + 1.
e
Câu 13. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = [2; 1].
B. D = (−2; 1).
C. D = R.

D. 1.

D. 3.

2

D. D = R \ {1; 2}.

Trang 1/11 Mã đề 1


Câu 14. Trong các mệnh đề dưới đây, mệnh đề nào!sai?
un
A. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
B. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
C. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
!
un
D. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
Câu 15. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞

A. lim [ f (x) − g(x)] = a − b.

x→+∞

B. lim [ f (x)g(x)] = ab.
x→+∞
f (x) a
D. lim

= .
x→+∞ g(x)
b

x→+∞

C. lim [ f (x) + g(x)] = a + b.
x→+∞

Câu 16. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 22 triệu đồng.
B. 3, 03 triệu đồng.
C. 2, 25 triệu đồng.
D. 2, 20 triệu đồng.
Câu 17. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
n2 + n + 1
A. un =
.
B.
u
=
.
n
n2
(n + 1)2


C. un =

1 − 2n
.
5n + n2

D. un =

Câu 18. Khối đa diện đều loại {3; 5} có số cạnh
A. 8.
B. 12.

C. 30.

D. 20.

Câu 19. Khối đa diện đều loại {4; 3} có số cạnh
A. 10.
B. 12.

C. 30.

D. 20.

n2 − 2
.
5n − 3n2

Câu 20. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy

một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là

10a3 3
3
3
3
A. 40a .
B. 20a .
C. 10a .
D.
.
3



x=t




Câu 21. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9

9
A. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
B. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x + 3) + (y + 1) + (z + 3) = .
D. (x − 3) + (y + 1) + (z + 3) = .
4
4
1

Câu 22. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R \ {1}.
B. D = (1; +∞).
C. D = (−∞; 1).

D. D = R.

Câu 23. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là −4.
B. Phần thực là −1, phần ảo là 4.
C. Phần thực là 4, phần ảo là −1.

D. Phần thực là 4, phần ảo là 1.
Câu 24. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 + 2 sin 2x.
B. 1 − sin 2x.
C. −1 + sin x cos x.

D. −1 + 2 sin 2x.
Trang 2/11 Mã đề 1



Câu 25. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. Vơ nghiệm.
B. 3 nghiệm.
C. 1 nghiệm.
D. 2 nghiệm.
Câu 26.
√ [4-1246d] Trong tất cả√các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất của |z|
B. 3.
C. 1.
D. 2.
A. 5.
Câu 27. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.

C. Khối lập phương.

D. Khối tứ diện đều.

Câu 28. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.

Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 16π.
B. V = 4π.
C. 8π.
D. 32π.
Câu 29. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; −8)(.
B. A(4; 8).
C. A(−4; 8).
D. A(4; −8).
Câu 30. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) trên khoảng (a; b).
B. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
C. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
D. Cả ba câu trên đều sai.
Câu 31. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −e2 .
B. 2e2 .
C. 2e4 .
D. −2e2 .
Câu 32. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 4 mặt. B. 3 đỉnh, 3 cạnh, 3 mặt. C. 4 đỉnh, 6 cạnh, 4 mặt. D. 4 đỉnh, 8 cạnh, 4 mặt.
Câu 33. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối bát diện đều.

C. Khối 12 mặt đều.

D. Khối tứ diện đều.


Câu 34. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó,√các kích
√ thước của hình hộp là
C. 2, 4, 8.
D. 6, 12, 24.
A. 8, 16, 32.
B. 2 3, 4 3, 38.
Câu 35. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1637
23
1728
1079
.
B.
.
C.
.
D.
.
A.
4913
68
4913
4913
Câu 36. [1] Tập
! xác định của hàm số y != log3 (2x + 1) là
!
1

1
1
A. − ; +∞ .
B. −∞; − .
C. −∞; .
2
2
2
Câu 37. [12214d] Với giá trị nào của m thì phương trình
A. 0 ≤ m ≤ 1.

B. 2 ≤ m ≤ 3.

1
3|x−2|

!
1
D.
; +∞ .
2

= m − 2 có nghiệm

C. 0 < m ≤ 1.

D. 2 < m ≤ 3.

Câu 38. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?

A. 2400 m.
B. 6510 m.
C. 1134 m.
D. 1202 m.
!
1
1
1
Câu 39. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
A. .
B. +∞.
C. .
D. 2.
2
2
Trang 3/11 Mã đề 1


1
Câu 40. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2] ∪ [−1; +∞). B. (−∞; −2) ∪ (−1; +∞). C. −2 ≤ m ≤ −1.
D. −2 < m < −1.
Câu 41. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?

A. Một khối chóp tam giác, một khối chóp ngữ giác.
B. Hai khối chóp tam giác.
C. Một khối chóp tam giác, một khối chóp tứ giác.
D. Hai khối chóp tứ giác.
Câu 42. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là

3
3
3
3
8a 3
8a 3
4a 3
a 3
.
B.
.
C.
.
D.
.
A.
3
9
9
9
Câu 43. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng

1
1
1
A. .
B. 4.
C. .
D. .
4
8
2
Câu 44. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 3
a3 5
a3 5
.
B.
.
C.
.
D.
.
A.
6
12
12
4
Câu 45. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,

lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 220 triệu.
B. 210 triệu.
C. 216 triệu.
D. 212 triệu.
Câu 46. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc√với đáy và S C = a 3. √
Thể tích khối chóp S .ABC√là

3
3
a 6
a3 3
a3 3
2a 6
.
B.
.
C.
.
D.
.
A.
9
12
2

4
Câu 47. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5; 2}.
B. {3}.
C. {2}.
D. {5}.
Câu 48. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối 12 mặt đều.
Câu 49. Tính lim
A. +∞.

x→3

x2 − 9
x−3

C. Khối bát diện đều.

D. Khối tứ diện đều.

B. 3.

C. −3.
D. 6.

Câu 50. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 62.

C. Vơ số.
D. 63.
3

Câu 51. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e.
B. e2 .
C. e5 .

D. e3 .

Câu 52. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a
a 3
A. .
B. .
C.
.
D. a.
2
3
2
Trang 4/11 Mã đề 1





x2 + 3x + 5
Câu 53. Tính giới hạn lim
x→−∞
4x − 1
1
A. .
B. 0.
4
Câu 54. Khối lập phương thuộc loại
A. {3; 4}.
B. {4; 3}.
Câu 55. [1] Đạo hàm của làm số y = log x là
1
ln 10
A. y0 =
.
B. y0 =
.
x ln 10
x
Câu 56. Khối đa diện đều loại {3; 3} có số cạnh
A. 8.
B. 6.

C. 1.

1
D. − .
4


C. {5; 3}.

D. {3; 3}.

1
.
10 ln x

C.

C. 4.

Câu 57. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 13.
B. 9.
C. 0.
x−3
Câu 58. [1] Tính lim
bằng?
x→3 x + 3
A. +∞.
B. 0.
C. −∞.

1
D. y0 = .
x
D. 5.
D. Không tồn tại.


D. 1.


Câu 59. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là



a3
a3 3
a3 3
3
B.
.
C.
.
D.
.
A. a 3.
4
3
12
2n + 1
Câu 60. Tính giới hạn lim
3n + 2
3
2
1
A. 0.
B. .

C. .
D. .
2
3
2
x+1
Câu 61. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. .
B. 3.
C. .
D. 1.
4
3
Câu 62. [1] Đạo hàm của hàm số y = 2 x là
1
1
A. y0 = x
.
B. y0 = 2 x . ln x.
C. y0 = 2 x . ln 2.
D. y0 =
.
2 . ln x
ln 2
Câu 63. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.

B. 3.
C. 1.
D. 2.
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
Câu 64. [3-1132d] Cho dãy số (un ) với un =
n2 + 1
1
A. lim un = .
B. lim un = 1.
2
C. lim un = 0.
D. Dãy số un khơng có giới hạn khi n → +∞.
Câu 65. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 10 năm.
B. 8 năm.
C. 7 năm.
D. 9 năm.
Câu 66. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 6.
B. V = 4.
C. V = 5.
D. V = 3.
Câu 67. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
A. 5.

B. .
C. 25.
5


D. 5.
Trang 5/11 Mã đề 1


Câu 68. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
A. 18.
B. 12.
C. 27.
D.
2

Câu 69.
Xác
định
phần
ảo
của
số
phức
z
=
(

2 + 3i)2


A. 6 2.
B. −7.
C. 7.
D. −6 2.
x−2
Câu 70. Tính lim
x→+∞ x + 3
2
A. 1.
B. 2.
C. −3.
D. − .
3
Câu 71. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
100.(1, 01)3
120.(1, 12)3
triệu.
B. m =
triệu.
A. m =
(1, 12)3 − 1
3
(1, 01)3

100.1, 03
C. m =
triệu.
D. m =
triệu.
3
(1, 01) − 1
3
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 72. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là



a3 3
a3 2
a3 3
A.
.
B.
.
C.
.
D. 2a2 2.
12
24
24
Câu 73. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối



√ chóp S .ABCD là
a3 3
a3 6
a3 2
a3 3
.
B.
.
C.
.
D.
.
A.
48
24
48
16
Câu 74. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị nhỏ nhất trên K.
B. f (x) liên tục trên K.
C. f (x) xác định trên K.
D. f (x) có giá trị lớn nhất trên K.
Câu 75. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một mơn nằm cạnh nhau là
2
1
1
9

A. .
B.
.
C. .
D.
.
5
10
5
10
d = 30◦ , biết S BC là tam giác đều
Câu 76. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
13
26

16
9
Z 1
Câu 77. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

1
.
4
Câu 78.
bằng 1 là:
√ Thể tích của khối lăng trụ tam giác đều có cạnh √
3
3
3
A.
.
B. .
C.
.
12
4
4
A. 0.

B. 1.

C.


D.

1
.
2


3
D.
.
2
tan x + m
Câu 79. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
Trang 6/11 Mã đề 1


A. (−∞; 0] ∪ (1; +∞).

B. (1; +∞).

C. (−∞; −1) ∪ (1; +∞). D. [0; +∞).
2

2


sin x
Câu 80. [3-c] Giá trị nhỏ nhất và√giá trị lớn nhất của hàm số f (x)
+ 2cos x √
lần lượt là
√ =2
C. 2 và 2 2.
D. 2 và 3.
A. 2 và 3.
B. 2 2 và 3.

Câu 81. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Khơng có câu nào B. Câu (II) sai.
sai.

C. Câu (I) sai.
4

Câu 82. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 :
5
2
7
A. a 8 .
B. a 3 .
C. a 3 .

√3


D. Câu (III) sai.

a2 bằng
5

D. a 3 .

d = 120◦ .
Câu 83. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
A. 4a.
B. 2a.
C. 3a.
D.
2
d = 300 .
Câu 84. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
0
Độ dài cạnh bên
√ CC = 3a. Thể tích V của khối lăng trụ đã cho.


a3 3
3a3 3
3
3
A. V =

.
B. V = 3a 3.
C. V = 6a .
D. V =
.
2
2
Câu 85. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 1).
B. A0 (−3; 3; 3).
C. A0 (−3; −3; 3).
D. A0 (−3; −3; −3).
Câu 86. [2] Cho chóp đều S .ABCD có đáy là hình vuông tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
A. a 3.
B. a 6.
C. 2a 6.
D.
.
2
3
2
Câu 87. Giá
√ trị cực đại của hàm số y =

√ x − 3x − 3x + 2


A. 3 + 4 2.
B. −3 − 4 2.
C. −3 + 4 2.
D. 3 − 4 2.
Câu 88. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {1}.
B. D = R \ {0}.
C. D = R.
D. D = (0; +∞).
mx − 4
Câu 89. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 26.
B. 34.
C. 67.
D. 45.
Câu 90. Dãy! số nào có giới hạn bằng 0?
n
6
n3 − 3n
A. un =
.
B. un =
.
5
n+1


!n
−2
C. un =
.
3

Câu 91. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 4 mặt.
C. 9 mặt.
 π
x
Câu 92. [2-c] Giá trị lớn nhất của hàm số y = e cos x trên đoạn 0; là
2


2 π4
3 π6
A.
e .
B.
e .
C. 1.
2
2

D. un = n2 − 4n.

D. 6 mặt.


D.

1 π3
e .
2
Trang 7/11 Mã đề 1


Câu 93. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 2.

B. 4.
Z

Câu 94. Cho
A. 1.

1

2

1
3|x−1|

C. 1.

= 3m − 2 có nghiệm duy


D. 3.

ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
B. −3.
C. 3.

D. 0.

Câu 95. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 2.

B. 4.

C. 1.

D. 3.

Câu 96. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 2.
C. 3.
D. 1.
Câu 97. Phát biểu nào sau đây là sai?
A. lim un = c (un = c là hằng số).

C. lim qn = 0 (|q| > 1).

1
= 0.
nk
1
D. lim = 0.
n

B. lim

Câu 98. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 2.

B. 3.

C. 1.

1
3|x−1|

= 3m − 2 có nghiệm duy

D. 4.

log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0.

D. m < 0 ∨ m > 4.

Câu 99. [3-1226d] Tìm tham số thực m để phương trình
A. m ≤ 0.

B. m < 0 ∨ m = 4.

Câu 100. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 5 mặt. B. 5 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 6 cạnh, 6 mặt.



x = 1 + 3t




Câu 101. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi




z = 1
qua điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là












x
=
1
+
7t
x
=
−1
+
2t
x
=
−1
+
2t
x = 1 + 3t

















A. 
.
B. 
y=1+t
y = −10 + 11t . C. 
y = −10 + 11t . D. 
y = 1 + 4t .

















z = 1 + 5t
z = 6 − 5t
z = −6 − 5t
z = 1 − 5t
Câu 102. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba cạnh.
B. Bốn cạnh.
C. Hai cạnh.

D. Năm cạnh.

Câu 103. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 91cm3 .
C. 48cm3 .
D. 84cm3 .
Trang 8/11 Mã đề 1


Câu 104. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
B. Hàm số đồng biến trên khoảng (1; 2).
C. Hàm số nghịch biến trên khoảng (−∞; 0).
D. Hàm số nghịch biến trên khoảng (0; 1).
Câu 105. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.

B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 106. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm
0
A đến đường



√ thẳng BD bằng
a b2 + c2
c a2 + b2
abc b2 + c2
b a2 + c2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
8
Câu 107. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 96.

B. 81.
C. 64.
D. 82.
Câu 108. Mệnh đề nào sau đây sai?
Z
A. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

B. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
C. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
!0
Z
f (x)dx = f (x).
D.
log 2x
Câu 109. [1229d] Đạo hàm của hàm số y =

x2
1 − 4 ln 2x
1 − 2 log 2x
1 − 2 ln 2x
.
C. y0 =
.
A. y0 =
.
B. y0 = 3
3
x

x ln 10
2x3 ln 10
Câu 110. Khối đa diện đều loại {3; 3} có số đỉnh
A. 3.
B. 5.
C. 2.
Câu 111. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = 0.
B. x = −2.
C. x = −8.

D. y0 =

2x3

1
.
ln 10

D. 4.
D. x = −5.

6
. Tính
Câu 112. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2 f (x3 ) − √
3x
+
1
Z 1
f (x)dx.

0

A. −1.

B. 2.

C. 6.
D. 4.
x−3 x−2 x−1
x
Câu 113. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [2; +∞).
B. (−∞; 2).
C. (2; +∞).
D. (−∞; 2].
Câu 114. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
10
20

20
40
C50
.(3)40
C50
.(3)20
C50
.(3)30
C50
.(3)10
A.
.
B.
.
C.
.
D.
.
450
450
450
450
Câu 115. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6

a 3
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
48
24
8
24
Trang 9/11 Mã đề 1


Câu 116. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = ln x − 1.
B. y0 = 1 − ln x.

C. y0 = x + ln x.

D. y0 = 1 + ln x.

2

Câu 117. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 4.

B. 2.
C. 3.

D. 5.

Câu 118. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 9 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 3 lần.
D. Tăng gấp 27 lần.
Câu 119. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 4.
B. −2.
C. 2.

D. −4.

Câu 120. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e2 − 2; m = e−2 + 2.
C. M = e−2 + 1; m = 1.
D. M = e−2 + 2; m = 1.
!
x+1
Câu 121. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2016
4035

2017
.
B.
.
C. 2017.
D.
.
A.
2018
2017
2018
Câu 122. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {4; 3}.
B. {5; 3}.
C. {3; 4}.
D. {3; 5}.
t
9
Câu 123. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao
9 + m2
cho f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. Vô số.
B. 2.
C. 0.
D. 1.
Câu 124. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
A. aαβ = (aα )β .

B. aα+β = aα .aβ .


4x + 1
Câu 125. [1] Tính lim
bằng?
x→−∞ x + 1
A. 4.
B. −1.

α

= aβ .
β
a

C. aα bα = (ab)α .

D.

C. −4.

D. 2.

Câu 126. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (−1; −7).
B. (1; −3).
C. (2; 2).

D. (0; −2).

Câu 127. Khối đa diện đều loại {3; 5} có số mặt

A. 12.
B. 8.

C. 20.
D. 30.
2
ln x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là
Câu 128. [3] Biết rằng giá trị lớn nhất của hàm số y =
x
e
các số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 22.
C. S = 135.
D. S = 24.
! x3 −3mx2 +m
1
Câu 129. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ R.
B. m , 0.
C. m ∈ (0; +∞).
D. m = 0.
1 − xy
Câu 130. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ

x + 2y
nhất Pmin của P√ = x + y.



2 11 − 3
9 11 − 19
9 11 + 19
18 11 − 29
A. Pmin =
.
B. Pmin =
. C. Pmin =
. D. Pmin =
.
3
9
9
21
- - - - - - - - - - HẾT- - - - - - - - - Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
D

1.
3.


2.

B

C

4. A
6.

5. A

D

7.

C

9.

C

10.

D

11.

C

12.


D

13.

C

14.

15.

D

D

23.

C

25.

D

20.

B

22.

B


24.

D

26.

D

27.

C

29.

30.

C

31. A

32.

C

33.
D

34.
B


40.

B
D

35. A

36. A
38.

C

18.

B

21.

C

16. A

C

17.
19.

8. A


C

37.

D

39.

D

41.

C

42.

B

43. A

44.

B

45.

D

46.


B

47.

D

49.

D

48. A
50.

B

51.

52.

C

53.

D

D

54.

B


55. A

56.

B

57.

C

58.

B

59.

C

60.

C

61. A

62.

C

63.

65.

64. A
66.

C

67.

B

68. A

69. A
1

D
C


70. A

71.

C

72.

B


73. A

74.

B

75.

D

77.

D

76. A
78.

79.

C

80.

B

81. A

82.

B


83.

84.
86.

D

85.

B

D
B
C

87.

88.

C

89.

90.

C

92. A


93.

C

94.
D

95.

B
B
D

96.

C

97.

B

C

98.

99.

B

100. A


101.

B

102. A
104.

103. A

D

105.

B

106.

B

107.

B

108.

B

109.


B

110.

D

112.

D

111.

C

113. A

114.

115.

D

117. A
119.

B
B

125. A
127.

129.

116.

D

118.

D

120. A

121. A
123.

B

122.

D

124.

D

126.

D

128. A


C
D

130. A

2



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×