Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (958)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (154.25 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Khối đa diện đều loại {3; 3} có số đỉnh
A. 2.
B. 3.

C. 5.

D. 4.

Câu 2. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 1.

B. 2.

C. 4.

D. 3.

Câu 3. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng


1
1
A. .
B. − .
C. −2.
D. 2.
2
2
[ = 60◦ , S O
Câu 4. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc

√ với mặt đáy và S O = a. Khoảng cách từ O đến (S
√ BC) bằng

a 57
2a 57
a 57
.
B. a 57.
.
D.
.
A.
C.
19
17
19
Câu 5. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 2).

B. (0; +∞).
C. (0; 2).
D. (−∞; 0) và (2; +∞).
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 6. [3-12217d] Cho hàm số y = ln
x+1
0
y
0
y
A. xy = e − 1.
B. xy = e + 1.
C. xy0 = −ey − 1.
D. xy0 = −ey + 1.
Câu 7. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45√◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là
10a3 3
A.
.
B. 20a3 .
C. 40a3 .
D. 10a3 .
3
1
Câu 8. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
xy + 1
0
y

0
A. xy = e − 1.
B. xy = −e − 1.
C. xy0 = −ey + 1.
D. xy0 = ey + 1.
5
Câu 9. Tính lim
n+3
A. 3.
B. 0.
C. 1.
D. 2.
x+1
Câu 10. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. .
B. .
C. 3.
D. 1.
3
4
x2
Câu 11. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = .

B. M = , m = 0.
C. M = e, m = 0.
D. M = e, m = 1.
e
e
Câu 12. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 3.
B. 2.
C. 5.
D. 1.
Trang 1/10 Mã đề 1


Câu 13. Phát biểu nào sau đây là sai?
1
A. lim √ = 0.
n
C. lim un = c (Với un = c là hằng số).


4n2 + 1 − n + 2
Câu 14. Tính lim
bằng
2n − 3
A. +∞.
B. 2.

1
= 0 với k > 1.
nk

D. lim qn = 1 với |q| > 1.
B. lim

C.

3
.
2

D. 1.

Câu 15.√Thể tích của tứ diện đều √
cạnh bằng a


a3 2
a3 2
a3 2
a3 2
.
B.
.
C.
.
D.
.
A.
4
6
2

12
Câu 16. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. 1.
C. Vô nghiệm.
D. 2.
1
a
, với a, b ∈ Z. Giá trị của a + b là
Câu 17. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
4 b ln 3
A. 7.
B. 4.
C. 2.
D. 1.
Câu 18. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P.
B. d nằm trên P hoặc d ⊥ P.
C. d ⊥ P.
D. d song song với (P).
Câu 19. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + 3.
B. T = 4 + .
C. T = e + 1.
D. T = e + .
e
e

Câu 20. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
Thể tích khối chóp S .ABCD là
√ phẳng vng góc với 3(ABCD).

3
3

a 3
a 2
a 3
A.
.
B.
.
C.
.
D. a3 3.
2
2
4



x=t




Câu 21. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 

y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
A. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
B. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x + 3) + (y + 1) + (z − 3) = .
D. (x − 3) + (y + 1) + (z + 3) = .
4
4
Câu 22. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là


3
3

a 15
a 5
a3 6
A.
.
B.
.
C.
.
D. a3 6.
3
3
3
x x
0
Câu 23. [2] Cho hàm số f (x) = 2 .5 . Giá trị của f (0) bằng
1
A. f 0 (0) = 10.
B. f 0 (0) = ln 10.
C. f 0 (0) =
.
D. f 0 (0) = 1.
ln 10
Câu 24. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Tứ diện đều.
B. Thập nhị diện đều. C. Bát diện đều.
D. Nhị thập diện đều.

Câu 25. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −7.
B. −5.
C. −3.

D. Không tồn tại.
Trang 2/10 Mã đề 1


Câu 26. [1-c] Giá trị của biểu thức
A. −2.

log7 16
log7 15 − log7

B. −4.

15
30

bằng

C. 2.

Câu 27. Thể tích của khối lập phương có cạnh bằng a 2 √

2a3 2
A. V = a3 2.
B. V = 2a3 .
C.

.
3
Câu 28. Trong các mệnh đề dưới đây, mệnh đề nào
! sai?
un
A. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn !
un
B. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn

D. 4.

D. 2a3 2.

!
un
C. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
D. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
1
bằng
Câu 29. [1] Giá trị của biểu thức log √3
10
1
A. .
B. −3.

3

1
D. − .
3
2
ln x
m
Câu 30. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 22.
C. S = 135.
D. S = 24.
!
3n + 2
2
Câu 31. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 5.
B. 2.
C. 3.
D. 4.
C. 3.


Câu 32. Hàm số nào sau đây khơng có cực trị
x−2
1
D. y =
.
C. y = x + .
x
2x + 1
Câu 33. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −3 ≤ m ≤ 3.
B. m ≤ 3.
C. m ≥ 3.
D. −2 ≤ m ≤ 2.
A. y = x4 − 2x + 1.

B. y = x3 − 3x.

Câu 34. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 4 lần.
B. Tăng gấp 8 lần.
C. Tăng gấp 6 lần.
D. Tăng gấp đôi.
Câu 35. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −2.
B. x = −5.
C. x = 0.

D. x = −8.


Câu 36. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 + ln x.
B. y0 = ln x − 1.

D. y0 = 1 − ln x.

C. y0 = x + ln x.

Câu 37. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = 6.
C. y(−2) = −18.
D. y(−2) = 2.
Câu 38. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
B. Số cạnh của khối chóp bằng số mặt của khối chóp.
C. Số đỉnh của khối chóp bằng số mặt của khối chóp.
D. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
Trang 3/10 Mã đề 1


Câu 39. [12214d] Với giá trị nào của m thì phương trình
A. 2 < m ≤ 3.

1
3|x−2|

= m − 2 có nghiệm


B. 2 ≤ m ≤ 3.
C. 0 ≤ m ≤ 1.
D. 0 < m ≤ 1.
x
x−3 x−2 x−1
+
+
+
và y = |x + 2| − x − m (m là tham
Câu 40. [4-1213d] Cho hai hàm số y =
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].
B. (−∞; 2).
C. (2; +∞).
D. [2; +∞).
x2 − 9
Câu 41. Tính lim
x→3 x − 3
A. 6.
B. +∞.

C. 3.

D. −3.

Câu 42. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu

A. lim+ f (x) = lim− f (x) = a.
B. f (x) có giới hạn hữu hạn khi x → a.
x→a

x→a

C. lim f (x) = f (a).
x→a

Câu 43.
Z Các khẳng định
Z nào sau đây là sai?

x→a

x→a

Z

f (x)dx, k là hằng số.
B.
f (x)dx = F(x) + C ⇒
!0
Z
Z
Z
f (x)dx = f (x).
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C. D.
C.

A.

k f (x)dx = k

D. lim+ f (x) = lim− f (x) = +∞.

Câu 44. Biểu thức nào sau đây √
khơng có nghĩa
−3
−1
A. (−1) .
B.
−1.

C. 0−1 .

Z

f (t)dt = F(t) + C.


D. (− 2)0 .

Câu 45. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 2020.
B. log2 13.
C. 13.
D. log2 2020.
Câu 46. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e2 .

B. −e2 .
C. 2e4 .
D. −2e2 .


Câu 47. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị nhỏ nhất của biểu thức P = x + 2y thuộc tập nào dưới
"
!
!
" đây?
5
5
A. (1; 2).
B. [3; 4).
C. 2; .
D.
;3 .
2
2

Câu 48. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 62.
C. 63.
D. Vơ số.
Câu 49. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 6.


C. 4.

D. 8.

Câu 50. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−1; 0).
B. (−∞; −1) và (0; +∞). C. (−∞; 0) và (1; +∞). D. (0; 1).
Câu 51. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m ≤ 3.
C. m > 3.
D. m < 3.
Câu 52. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −12.
B. −15.
C. −9.
D. −5.
Câu 53. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lập phương.
B. Hình lăng trụ.
C. Hình tam giác.

D. Hình chóp.
Trang 4/10 Mã đề 1


Câu 54. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là

A. Phần thực là −1, phần ảo là 4.
B. Phần thực là 4, phần ảo là 1.
C. Phần thực là −1, phần ảo là −4.
D. Phần thực là 4, phần ảo là −1.
Câu 55. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba mặt.
B. Hai mặt.
C. Năm mặt.

D. Bốn mặt.
3

Câu 56. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 1200 cm2 .
C. 160 cm2 .
D. 120 cm2 .
Câu 57. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 5%.
B. 0, 7%.
C. 0, 6%.
D. 0, 8%.
Câu 58. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 0.
B. 1.
C. 3.


D. 2.

Câu 59. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 27 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 3 lần.
D. Tăng gấp 9 lần.
Câu 60. [1] Đạo hàm của làm số y = log x là
1
ln 10
.
B.
.
A. y0 =
x
10 ln x

1
C. y0 = .
x

D. y0 =
2

1
.
x ln 10

2


sin x
Câu 61.
+ 2cos x √
lần lượt là
√ [3-c] Giá trị nhỏ nhất và giá√trị lớn nhất của hàm số f (x) = 2
B. 2 và 2 2.
C. 2 và 3.
D. 2 và 3.
A. 2 2 và 3.

Câu 62. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 4 mặt.
C. 6 mặt.
Câu 63. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 2.
C. 3.
x−2
Câu 64. Tính lim
x→+∞ x + 3
A. −3.
B. 1.
C. 2.

D. 9 mặt.
D. Vô nghiệm.

2

D. − .
3
[
Câu 65. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD = 60◦ , S A ⊥ (ABCD).
Biết rằng√ khoảng cách từ A đến cạnh S C là a. Thể tích khối√chóp S .ABCD là


a3 3
a3 2
a3 2
3
.
B. a 3.
C.
.
D.
.
A.
6
12
4
Câu 66. Cho z là nghiệm của phương trình√ x2 + x + 1 = 0. Tính P = z4 + 2z3 − z

−1 + i 3
−1 − i 3
A. P = 2i.
B. P =
.
C. P = 2.
D. P =

.
2
2
Câu 67. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1637
23
1079
1728
.
B.
.
C.
.
D.
.
A.
4913
68
4913
4913
Câu 68. Cho hàm số y = x3 − 2x2 + x + 1. !Mệnh đề nào dưới đây đúng?
1
A. Hàm số nghịch biến trên khoảng ; 1 .
B. Hàm số nghịch biến trên khoảng (1; +∞).
3!
!
1
1
C. Hàm số đồng biến trên khoảng ; 1 .

D. Hàm số nghịch biến trên khoảng −∞; .
3
3
Trang 5/10 Mã đề 1


Câu 69. Tính lim
x→2
A. 3.

x+2
bằng?
x
B. 1.

C. 0.

D. 2.
tan x + m
Câu 70. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (1; +∞).
B. [0; +∞).
C. (−∞; 0] ∪ (1; +∞). D. (−∞; −1) ∪ (1; +∞).
log2 240 log2 15


+ log2 1 bằng
Câu 71. [1-c] Giá trị biểu thức
log3,75 2 log60 2
A. 3.
B. −8.
C. 4.
D. 1.
1
2mx + 1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
Câu 72. Giá trị lớn nhất của hàm số y =
m−x
3
A. 1.
B. 0.
C. −5.
D. −2.
2
2
2
1 + 2 + ··· + n
Câu 73. [3-1133d] Tính lim
n3
1
2
A. 0.
B. .
C. +∞.
D. .
3

3
Câu 74. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 13.
B. 0.
C. Không tồn tại.
D. 9.
Câu 75. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 8 mặt.
C. 10 mặt.

D. 4 mặt.

Câu 76. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8
A. m = ± 2.
B. m = ±1.
C. m = ± 3.
D. m = ±3.
Câu 77. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (−∞; 6, 5).
B. (4; 6, 5].
C. (4; +∞).

D. [6, 5; +∞).

Câu 78. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 2 nghiệm.
B. Vô nghiệm.
C. 1 nghiệm.


D. 3 nghiệm.

Câu 79. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≥ 0.
B. − < m < 0.
C. m ≤ 0.
D. m > − .
4
4
Câu 80. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lăng trụ tam giác.
B. Khối bát diện đều.
C. Khối lập phương.
D. Khối tứ diện.
 π
x
Câu 81. [2-c] Giá trị lớn nhất của hàm số y = e cos x trên đoạn 0; là
2


1 π
3 π6
2 π4
A. 1.
B.
e .
C.

e .
D. e 3 .
2
2
2
log(mx)
Câu 82. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0.
B. m < 0 ∨ m > 4.
C. m ≤ 0.
D. m < 0 ∨ m = 4.
Câu 83. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 1.
B. 4 − 2 ln 2.
C. −2 + 2 ln 2.

D. e.

Câu 84. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 3, 5 triệu đồng.
B. 50, 7 triệu đồng.
C. 20, 128 triệu đồng. D. 70, 128 triệu đồng.
Trang 6/10 Mã đề 1


4


Câu 85. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 :
2
5
7
A. a 3 .
B. a 3 .
C. a 3 .

√3

a2 bằng
5

D. a 8 .

Câu 86. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 3 mặt.
D. 4 mặt.
Câu 87. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 14 năm.
C. 12 năm.
D. 11 năm.
Câu 88. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?

A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
x
9
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
Câu 89. [2-c] Cho hàm số f (x) = x
9 +3
1
A. 2.
B. .
C. −1.
D. 1.
2
Câu 90. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m > 3.
C. m ≥ 3.
D. m < 3.
Câu 91. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Khơng có câu nào B. Câu (III) sai.
C. Câu (I) sai.
D. Câu (II) sai.
sai.

Câu 92. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
B. 6.
C. 9.
D. .
A. .
2
2
Câu 93.
đề nào sau đây sai?
Z [1233d-2] Mệnh
Z
k f (x)dx = k

A.

f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.

Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
C.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z

Z
Z
D.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
B.

Câu 94.

[3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23
√ i
h
3

q
x+ log23 x + 1+4m−1 =

0 có ít nhất một nghiệm thuộc đoạn 1; 3
A. m ∈ [0; 4].
B. m ∈ [0; 2].

C. m ∈ [0; 1].
D. m ∈ [−1; 0].
log(mx)
Câu 95. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m > 4.
B. m < 0 ∨ m = 4.
C. m ≤ 0.

D. m < 0.
Trang 7/10 Mã đề 1


ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 3.
B. 1.
C. −3.
D.
x+1
Câu 97. Tính lim
bằng
x→−∞ 6x − 2
1
1
A. .
B. .
C. 1.
D.
3
2
Câu 98. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 10 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
4x + 1

Câu 99. [1] Tính lim
bằng?
x→−∞ x + 1
A. 4.
B. −4.
C. −1.
D.
Z

2

Câu 96. Cho

0.

1
.
6

2.

Câu 100. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3.
Tính f (2) + f (4)?
A. 4.
B. 11.
C. 12.
D. 10.
Câu 101. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1

1
1
A. m < .
B. m > .
C. m ≥ .
D. m ≤ .
4
4
4
4
Câu 102. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD

√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng


a 2
a 2
.
B. 2a 2.
C. a 2.
D.
.
A.
4
2
Câu 103. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi
G la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0

1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
18
9
6
15
1
Câu 104. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 2.
B. 3.
C. 1.
D. 4.
Câu 105. Cho hình chóp S .ABCD có√đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
a 5. Thể tích khối chóp √
S .ABCD là
√ S H ⊥ (ABCD), S A =
4a3 3
4a3
2a3 3
2a3
A.

.
B.
.
C.
.
D.
.
3
3
3
3
Câu 106. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n3 lần.
C. 2n2 lần.
D. n3 lần.
Câu 107. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. Vô số.
B. 3.
C. 1.
D. 2.
Câu 108. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn
nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
Trang 8/10 Mã đề 1



120.(1, 12)3
triệu.
(1, 12)3 − 1
(1, 01)3
C. m =
triệu.
(1, 01)3 − 1

100.1, 03
triệu.
3
100.(1, 01)3
D. m =
triệu.
3

A. m =

B. m =

Câu 109. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 8π.
B. 32π.
C. V = 4π.
D. 16π.
n−1
Câu 110. Tính lim 2
n +2

A. 1.
B. 3.
C. 0.
D. 2.
Câu 111. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (2; +∞).
C. (0; 2).
Câu 112. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 + 2e
1 + 2e
.
B. m =
.
C. m =
.
A. m =
4e + 2
4e + 2
4 − 2e

D. R.
D. m =

1 − 2e
.
4 − 2e

Câu 113. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc

45◦ . Tính
.ABC theo a
√ thể tích của khối chóp 3S√

3
a 15
a 5
a3 15
a3
A.
.
B.
.
C.
.
D.
.
25
25
5
3
Câu 114. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 6.
B. V = 5.
C. V = 3.
D. V = 4.

Câu 115. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là √



a3 3
a3 3
a3
3
.
B.
.
C. a 3.
D.
.
A.
4
3
12
Câu 116. Cho hình chóp S .ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


3
3
a 2
a 6
a3 3
a3 3
A.
.
B.

.
C.
.
D.
.
16
48
24
48
d = 30◦ , biết S BC là tam giác đều
Câu 117. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
13
26
9

16
2
Câu 118. Tính
√ mơ đun của số phức√4z biết (1 + 2i)z = 3 + 4i.
A. |z| = 2 5.
B. |z| = 5.
C. |z| = 5.

D. |z| =


5.

1
5

Câu 119. [2] Tập xác định của hàm số y = (x − 1) là
A. D = (1; +∞).
B. D = R \ {1}.
C. D = (−∞; 1).

D. D = R.

Câu 120. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Giảm đi n lần.
B. Không thay đổi.
C. Tăng lên n lần.
D. Tăng lên (n − 1) lần.
Câu 121. [3-12214d] Với giá trị nào của m thì phương trình

A. 2 < m ≤ 3.

B. 0 ≤ m ≤ 1.

1
3|x−2|

= m − 2 có nghiệm

C. 2 ≤ m ≤ 3.

D. 0 < m ≤ 1.
Trang 9/10 Mã đề 1


Câu 122. Mệnh đề nào sau đây sai?
A. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
!0
Z
B.
f (x)dx = f (x).
C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).
D. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

Câu 123. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √


a3 6
a3 6
a3 6
a3 3
.
B.
.
C.
.
D.
.
A.
24
48
24
8
Câu 124. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a
a 3
A. .
B. .
C.
.
D. a.
3
2

2
Câu 125. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
B.
.
C. a3 .
D.
.
A.
6
24
12
Câu 126. Khối đa diện đều loại {3; 4} có số cạnh
A. 12.
B. 10.
C. 8.
D. 6.
un
Câu 127. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. −∞.
B. 1.
C. +∞.
D. 0.
2


Câu 128. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 3.
B. 4.
C. 5.

D. 2.

Câu 129. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
.
D. log2 a =
.
A. log2 a = loga 2.
B. log2 a = − loga 2.
C. log2 a =
log2 a
loga 2
Câu 130. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
A. 68.
.
C. 5.
B.

D. 34.
17
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D
C

3.

D

5.
7.

B

9.

B

D


4.

D

6. A
8. A

C

11.

2.

10.

B

12.

B

13.

D

14.

D

15.


D

16.

D

17. A

18.

19. A

20. A

21.
23.

D

22.

B

B
B

D

26.


27.

D

28. A

29.

D

30. A

31.

D

32.

33. A

34.
D

37.

C

24.


25.

35.

B

D
B

36. A

C

38.

C
D

39. A

40.

41. A

42.

C

44.


C

43.
45.

C
B

46.

B
B

47.

D

48.

49.

D

50. A

51. A

52. A

53.


54.

C

55. A
57.

56. A
B

58. A

59. A

60.

61. A

63. A

64.
66.

D

65.

B


D
D

67. A

C

69.

68. A
1

D


70. A

71.

B
B

72.

B

73.

74.


B

75. A

76. A

77.

78. A

79.

80.

D

81.

82.

D

83.

B
D
C
D

84.


C

85. A

86.

C

87.

D

88.

C

89.

D

90.

C

91. A

92.

D


93. A

94.

D

95.

96.

99. A

100.

101.

C

102.

D

C
B

D

108.


C

111.

C

113. A

114.

D

115.

116.

D

117. A

118.

C

106.
D

110.

D


104.

B

107.
112.

D

97.

C

98. A

105.

B

B

B

119. A

120. A

121. A


122.

C

124.

123.
D

126. A
128.

B

130.

B

2

C

125.

D

127.

D


129.

D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×