Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (161)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.54 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD. Cho
hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 8π.
B. 16π.
C. V = 4π.
D. 32π.
1 3
Câu 2. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x − mx2 − (m + 6)x + 1 luôn đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = −3, m = 4.
B. −3 ≤ m ≤ 4.
C. m = 4.
D. m = −3.



x = 1 + 3t





Câu 3. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là











x
=
1
+
7t
x
=
−1

+
2t
x
=
1
+
3t
x = −1 + 2t
















A. 
.
B. 
D. 
y=1+t
y = −10 + 11t . C. 

y = 1 + 4t .
y = −10 + 11t .
















z = 1 + 5t
z = −6 − 5t
z = 1 − 5t
z = 6 − 5t
Câu 4. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (−∞; 6, 5).
B. (4; +∞).
C. [6, 5; +∞).

D. (4; 6, 5].

Câu 5. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn

[1; e]. Giá trị của T = M + m bằng
2
2
D. T = 4 + .
A. T = e + 1.
B. T = e + 3.
C. T = e + .
e
e
Câu 6. Khối đa diện đều loại {5; 3} có số đỉnh
A. 30.
B. 8.
C. 20.
D. 12.
Câu 7. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu của A lên BC là
!
!
8
5
7
A.
; 0; 0 .
; 0; 0 .
; 0; 0 .
B.
C. (2; 0; 0).
D.
3

3
3
Câu 8. Khối đa diện đều loại {5; 3} có số cạnh
A. 20.
B. 8.

C. 30.

D. 12.

Câu 9. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
√ C là

3
a 3
a3
a3 3
3
A.
.
B. a .
C.
.
D.
.
6
3
2

Câu 10. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 7.

B. 9.

C. 5.

D. 0.

Câu 11. Khối đa diện đều loại {4; 3} có số mặt
A. 8.
B. 10.
C. 12.
D. 6.
!
!
!
x
4
1
2
2016
Câu 12. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017

2017
2017
2016
A. T =
.
B. T = 2016.
C. T = 2017.
D. T = 1008.
2017
Trang 1/10 Mã đề 1


Câu 13. Khối đa diện đều loại {3; 4} có số cạnh
A. 12.
B. 8.

C. 10.

D. 6.

Câu 14. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 6).
B. (2; 4; 3).
C. (2; 4; 4).
D. (1; 3; 2).
Z 2
ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
Câu 15. Cho

x2
1
A. −3.
B. 1.
C. 3.
D. 0.
Câu 16. Phát biểu nào sau đây là sai?
A. lim qn = 0 (|q| > 1).
B. lim un = c (un = c là hằng số).
1
1
D. lim = 0.
C. lim k = 0.
n
n
Câu 17. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim− f (x) = f (b).
B. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim+ f (x) = f (a) và lim+ f (x) = f (b).
D. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a

x→b

x→a


x→b

d = 120◦ .
Câu 18. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 3a.
B.
.
C. 4a.
D. 2a.
2
log 2x
Câu 19. [1229d] Đạo hàm của hàm số y =

x2
1 − 4 ln 2x
1
1 − 2 ln 2x
1 − 2 log 2x
.
B. y0 =
.
C. y0 = 3
.
D. y0 = 3
.
A. y0 =
3

3
x
2x ln 10
2x ln 10
x ln 10
Câu 20. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



a3 3
4a3 3
2a3 3
5a3 3
.
B.
.
C.
.
D.
.
A.
3
2
3
3
Câu 21. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P hoặc d ⊥ P.

B. d nằm trên P.
C. d ⊥ P.
D. d song song với (P).
Câu 22. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
√ tích khối chóp S .ABC
√là
√ với đáy và S C = a 3. 3Thể

a3 3
2a 6
a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
2
9
12
4
Câu 23. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1637
1079

23
1728
A.
.
B.
.
C.
.
D.
.
4913
4913
68
4913
x−2 x−1
x
x+1
Câu 24. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3].
B. [−3; +∞).
C. (−∞; −3).

D. (−3; +∞).
Câu 25. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
Trang 2/10 Mã đề 1


(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (III).

B. (II) và (III).

Câu 26. Hàm số nào sau đây khơng có cực trị
1
x−2
A. y = x + .
B. y =
.
x
2x + 1

C. (I) và (II).

D. Cả ba mệnh đề.

C. y = x4 − 2x + 1.

D. y = x3 − 3x.


Câu 27. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 4.
B. ln 12.
C. ln 14.
D. ln 10.
Câu 28. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = (0; +∞).
B. D = R \ {1}.

C. D = R.

D. D = R \ {0}.

1 3
x − 2x2 + 3x − 1.
3
B. (−∞; 1) và (3; +∞). C. (1; +∞).
D. (1; 3).

Câu 29. Tìm tất cả các khoảng đồng biến của hàm số y =
A. (−∞; 3).

Câu 30. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 4 mặt.
C. 6 mặt.

D. 5 mặt.


Câu 31. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −2.
B. m = 0.
C. m = −1.

D. m = −3.

Câu 32. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
4x + 1
bằng?
x→−∞ x + 1
B. 2.

Câu 33. [1] Tính lim
A. 4.

C. −4.

D. −1.

C. −∞.

D. +∞.

3


Câu 34. Tính lim
x→1

A. 3.
Z
Câu 35. Cho
A.

1
.
4

x −1
x−1

B. 0.

1

xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b

0

B.

1
.
2

C. 1.


D. 0.

Câu 36. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8
A. m = ± 3.
B. m = ±1.
C. m = ± 2.
D. m = ±3.
Câu 37. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −5.
B. −15.
C. −9.
D. −12.
[ = 60◦ , S O
Câu 38. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a. Khoảng cách từ O đến (S√BC) bằng


a 57
2a 57
a 57
A.
.
B. a 57.
C.
.
D.
.

17
19
19
Trang 3/10 Mã đề 1


Câu 39. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 25 triệu đồng.
B. 2, 22 triệu đồng.
C. 2, 20 triệu đồng.
D. 3, 03 triệu đồng.
Câu 40. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (0; 1).
B. (−1; 0).
C. (−∞; 0) và (1; +∞). D. (−∞; −1) và (0; +∞).
Câu 41. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. 1.
C. Vô nghiệm.
D. 2.
Câu 42. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.016.000.

C. 102.423.000.
D. 102.424.000.
Câu 43. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng 2n + 1.
B. Số mặt của khối chóp bằng 2n+1.
C. Số cạnh của khối chóp bằng 2n.
D. Số mặt của khối chóp bằng số cạnh của khối chóp.
Câu 44. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 22.
B. S = 32.

m
ln2 x
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e

C. S = 135.

D. S = 24.

Câu 45. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 14 năm.
C. 12 năm.
D. 11 năm.

Câu 46. Khối đa diện đều loại {3; 5} có số mặt
A. 8.
B. 12.

C. 30.

D. 20.

Câu 47. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2

A. 4.

B. 2.

C. 6.

Câu 48. [12214d] Với giá trị nào của m thì phương trình
A. 2 < m ≤ 3.

B. 0 < m ≤ 1.

Z

6

3

3x + 1


. Tính

1

f (x)dx.
0

D. −1.
1

3|x−2|

= m − 2 có nghiệm

C. 2 ≤ m ≤ 3.

D. 0 ≤ m ≤ 1.

Câu 49. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. 1.
B. 3.
C. .
D. .
2
2

Câu 50. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.

Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới
" đây?
!
5
5
A. (1; 2).
B. 2; .
C.
;3 .
D. [3; 4).
2
2
Trang 4/10 Mã đề 1


Câu 51. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng



a 2
a 2
A. a 2.
B.
.
C.
.
D. 2a 2.
4

2
Câu 52. Khối đa diện đều loại {3; 3} có số mặt
A. 2.
B. 3.
x − 5x + 6
x−2
B. −1.

C. 4.

D. 5.

C. 5.

D. 0.

2

Câu 53. Tính giới hạn lim
x→2

A. 1.

Câu 54. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = −18.
B. y(−2) = 2.
C. y(−2) = 6.
D. y(−2) = 22.
Câu 55. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc

với (S BC).
√ là
√ Thể tích khối chóp S 3.ABC


3
a 3
a 2
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
6
12
12
4
Câu 56. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog
A. 25.

B. 5.

C.



a

5



bằng
5.

D.

1
.
5

Câu 57. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

a3 3
a3 6
a3 6
a3 6
.
B.
.
C.
.
D.

.
A.
48
24
8
24
x+1
Câu 58. Tính lim
bằng
x→+∞ 4x + 3
1
1
B. 3.
C. 1.
D. .
A. .
3
4
Câu 59. Khối đa diện đều loại {3; 5} có số đỉnh
A. 12.
B. 8.

C. 20.

Câu 60. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 5}.
B. {5; 3}.
C. {4; 3}.

D. 30.

D. {3; 4}.

Câu 61. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
!
1
C. Hàm số đồng biến trên khoảng ; 1 .
3
Câu 62.√Biểu thức nào sau đây √
khơng có nghĩa
−3
0
A. (− 2) .
B.
−1.

!
1
B. Hàm số nghịch biến trên khoảng ; 1 .
3
!
1
D. Hàm số nghịch biến trên khoảng −∞; .
3

C. (−1)−1 .

D. 0−1 .

Câu 63. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành

d0 ?
A. Khơng có.
B. Có một.
C. Có vơ số.
D. Có hai.
Câu 64. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Trang 5/10 Mã đề 1


Câu 65. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; 3).
B. A0 (−3; −3; −3).
C. A0 (−3; 3; 3).
D. A0 (−3; 3; 1).
Câu 66. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 3 mặt.
C. 6 mặt.
D. 4 mặt.
Câu 67. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 9 mặt.

D. 3 mặt.


Câu 68. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể
√ tích khối chóp S .ABCD là
3
10a 3
.
C. 40a3 .
D. 10a3 .
A. 20a3 .
B.
3
1

Câu 69. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (1; +∞).
B. D = R \ {1}.
C. D = (−∞; 1).

D. D = R.

0 0 0 0
0
Câu 70.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 3
a 6
a 6

.
B.
.
C.
.
D.
.
A.
2
7
2
3
log(mx)
= 2 có nghiệm thực duy nhất
Câu 71. [1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m < 0.
B. m < 0 ∨ m > 4.
C. m ≤ 0.
D. m < 0 ∨ m = 4.

Câu 72. Dãy số nào có giới hạn bằng 0?
!n
6
2
A. un = n − 4n.
B. un =
.
5
Câu 73. Khối chóp ngũ giác có số cạnh là

A. 11 cạnh.
B. 12 cạnh.


1−x2

Câu 74. [12215d] Tìm m để phương trình 4 x+
3
9
B. 0 < m ≤ .
A. 0 ≤ m ≤ .
4
4
Câu 75. Vận tốc chuyển động của máy bay là v(t)
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 6510 m.
B. 2400 m.

n3 − 3n
C. un =
.
n+1

!n
−2
D. un =
.
3

C. 9 cạnh.


D. 10 cạnh.



− 4.2 x+

1−x2

− 3m + 4 = 0 có nghiệm

3
D. 0 ≤ m ≤ .
4
2
= 6t + 1(m/s). Hỏi quãng đường máy bay bay từ giây
C. m ≥ 0.

C. 1202 m.

D. 1134 m.

Câu 76. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 1.
C. 2.
D. 3.
Câu 77. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).

C. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
D. Hàm số nghịch biến trên khoảng (−2; 1).
Câu 78. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
A. V = 3S h.
B. V = S h.
C. V = S h.
3
Câu 79. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 6.
B. −1.
C. 2.

1
D. V = S h.
2
D. 1.
2

x
Câu 80. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = , m = 0.
B. M = e, m = .
C. M = e, m = 1.
D. M = e, m = 0.
e
e

Trang 6/10 Mã đề 1


Câu 81. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối lập phương.
1
bằng
Câu 82. [1] Giá trị của biểu thức log √3
10
1
A. .
B. −3.
3

C. Khối bát diện đều.

D. Khối 12 mặt đều.

1
C. − .
3

D. 3.

Câu 83. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 3.

B. 2.


1
3|x−1|

C. 1.

= 3m − 2 có nghiệm duy

D. 4.

Câu 84. Phát biểu nào sau đây là sai?
A. lim un = c (Với un = c là hằng số).
1
C. lim √ = 0.
n

1
= 0 với k > 1.
nk
D. lim qn = 1 với |q| > 1.

B. lim

Câu 85. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Ba mặt.
B. Hai mặt.
C. Một mặt.

D. Bốn mặt.


Câu 86. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
C. −2.
D. − .
A. 2.
B. .
2
2
a
1
Câu 87. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 2.
B. 7.
C. 1.
D. 4.
Câu 88. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e2 − 2; m = e−2 + 2.
C. M = e−2 + 1; m = 1.
D. M = e−2 + 2; m = 1.

Câu 89. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √



a3 6
a 2
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
36
6
18
6
Câu 90. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
A. lim [ f (x)g(x)] = ab.
B. lim
= .
x→+∞
x→+∞ g(x)
b
C. lim [ f (x) + g(x)] = a + b.
D. lim [ f (x) − g(x)] = a − b.
x→+∞


x→+∞

Câu 91. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 92. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 5
a3 5
a3 3
A.
.
B.
.
C.
.
D.
.
6
12
4
12
Câu 93. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≤ 3.
B. −3 ≤ m ≤ 3.
C. −2 ≤ m ≤ 2.

D. m ≥ 3.
Câu 94. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≥ 0.
B. m > − .
C. − < m < 0.
D. m ≤ 0.
4
4
Trang 7/10 Mã đề 1


Câu 95. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.
B. 0, 5.
C. 0, 2.
D. 0, 4.
Câu 96. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 18 lần.
B. Tăng gấp 3 lần.
C. Tăng gấp 9 lần.
D. Tăng gấp 27 lần.
Z 3
a
a
x

Câu 97. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = −2.
B. P = 16.
C. P = 4.
D. P = 28.
Câu 98. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC) một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √

a3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
4
8
12
4

Câu 99. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = 0.
B. x = −5.
C. x = −2.
D. x = −8.
Câu 100. Tứ diện đều thuộc loại
A. {3; 4}.
B. {3; 3}.

C. {4; 3}.

D. {5; 3}.

Câu 101. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) trên khoảng (a; b).
B. Cả ba câu trên đều sai.
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
log 2x
Câu 102. [3-1229d] Đạo hàm của hàm số y =

x2
1 − 2 ln 2x
1 − 2 log 2x
1
1 − 4 ln 2x
.
B. y0 = 3
.

C. y0 =
.
.
D. y0 = 3
A. y0 =
3
3
2x ln 10
x ln 10
x
2x ln 10
Câu 103. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. 6.
B. .
C. 9.
D. .
2
2
2
1−n
Câu 104. [1] Tính lim 2
bằng?
2n + 1
1
1
1
A. 0.

B. − .
C. .
D. .
2
3
2
!
1
1
1
+
+ ··· +
Câu 105. Tính lim
1.2 2.3
n(n + 1)
3
A. 2.
B. 0.
C. .
D. 1.
2
Câu 106. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 22016 .
B. 0.
C. e2016 .
D. 1.

Câu 107. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả
bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

A. 63.
B. 62.
C. Vơ số.
D. 64.
Trang 8/10 Mã đề 1


Câu 108. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.




5 13
.
C. 2 13.
A. 2.
B.
D. 26.
13
Câu 109. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp
√ là√
A. 2, 4, 8.
B. 8, 16, 32.
C. 2 3, 4 3, 38.
D. 6, 12, 24.
Câu 110.
√cạnh bằng a



√ Thể tích của tứ diện đều
3
3
a 2
a3 2
a3 2
a 2
.
B.
.
C.
.
D.
.
A.
4
12
6
2
Câu 111. Cho hình chóp S .ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung
điểm cạnh AB, biết S H ⊥ (ABCD).√Thể tích khối chóp S .ABCD
√ là
3
3
3
a
2a 3
4a 3
a3

A.
.
B.
.
C.
.
D.
.
3
3
3
6
Câu 112.
[1233d-2] ZMệnh đề nào sau đây sai?
Z
k f (x)dx = k

A.

f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.

Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
C.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.

Z
Z
Z
D.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
B.

x
Câu 113.
√ Tính diện tích hình phẳng giới hạn bởi các đường y = xe , y = 0, x = 1.
3
1
3
A.
.
B. .
C. .
D. 1.
2
2
2
Câu 114. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên


hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (I) đúng.

B. Cả hai câu trên sai. C. Cả hai câu trên đúng. D. Chỉ có (II) đúng.
mx − 4
Câu 115. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 26.
B. 34.
C. 67.
D. 45.
Câu 116. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 0) và (2; +∞). B. (0; 2).
C. (−∞; 2).

D. (0; +∞).

Câu 117. [2] Cho hàm số f (x) = 2 .5 . Giá trị của f (0) bằng
x

0

x

1
.

D. f 0 (0) = ln 10.
ln 10
Câu 118. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là −1.
B. Phần thực là −1, phần ảo là 4.
C. Phần thực là −1, phần ảo là −4.
D. Phần thực là 4, phần ảo là 1.
A. f 0 (0) = 1.

B. f 0 (0) = 10.

C. f 0 (0) =

Câu 119. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −5.
B. 6.
C. −6.
2

D. 5.
Trang 9/10 Mã đề 1


Câu 120.
Z Mệnh!0đề nào sau đây sai?
A.
f (x)dx = f (x).
B. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).
D. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì


f (x)dx = F(x) + C.

Câu 121. Tính thể tích khối lập √
phương biết tổng diện tích tất cả các mặt bằng 18.
C. 9.
D. 8.
A. 27.
B. 3 3.
Câu 122.
√ Thể tích của khối lăng
√ trụ tam giác đều có cạnh bằng 1 là:
3
3
3
A.
.
B.
.
C. .
2
12
4
2,4
Câu 123. [1-c] Giá trị của biểu thức 3 log0,1 10 bằng
A. 7, 2.
B. 72.
C. 0, 8.
1
Câu 124. Hàm số y = x + có giá trị cực đại là

x
A. 2.
B. −2.
C. 1.


3
D.
.
4
D. −7, 2.

D. −1.

Câu 125. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh
bên S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a 58
3a
3a 38
a 38
A.
.
B.
.
C.
.

D.
.
29
29
29
29
Câu 126. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 127. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 10.
B. 3.
C. 12.

D. 27.

Câu 128. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 3.

B. 0.

C. 1.

Câu 129. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. Không tồn tại.

B. −5.
C. −7.
log2 240 log2 15

+ log2 1 bằng
Câu 130. [1-c] Giá trị biểu thức
log3,75 2 log60 2
A. 1.
B. −8.
C. 3.

D. 2.
D. −3.

D. 4.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
D

3.

2. A
D


4.

5.

B

6.

C

7. A

8.

C

9.

D

11.

D

10.

B

12.


D

13. A

14. A

15. A

16. A

17. A

18.

B

19.

20.

B

21. A
C

22.

23. A


24. A
26.

B

28.

25.

C

27.

C

29.

C

30.

B

31. A

32.

B

33. A

35.

34. A
36.
40.

D
B

42.
44.

B

B

37.

C

38.

D

D

D

39.


B

41.

B

43.

C
D

45.

B

46.

D

47. A
49.

48. A
50.

C

51.

52.


C

53.

54. A

55.

56. A

57.

58.

D

C
B
C
D

59. A

60. A

61.

62.


D

D

B

63.

64.

B

65.

66.

B

68. A
70.

69. A
1

D
C
D


71.


D

72.

D

73.

D

74.

D

75. A
77.

78.

B

81.

C

82.

83.


C

84.

85.

D

D
C
D

86.

C

88. A

B
C

89.
91. A
93.

B

80.

79. A


87.

C

76.

B

90.

B

92.

B

94.

B

96.

95. A
97.

C

D


98.

B

99.

D

100.

B

101.

D

102.

B

104.

B

106.

B

108.


B

110.

B

103.

B
D

105.
107.

B
D

109.
111.

C

113.
115.

112. A
D

B


117.

116. A
D

118. A

119. A
121.

120.

C

122.

B

123.

D

124.

125. A
127.

C

114.


B

129. A

B

126.

D

128.

D

130.

2

D

B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×