Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (700)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.74 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≥ 0.
B. − < m < 0.
C. m > − .
D. m ≤ 0.
4
4
Câu 2. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối tứ diện đều.
C. Khối 12 mặt đều.
D. Khối bát diện đều.
Câu 3. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Đường phân giác góc phần tư thứ nhất.
B. Hai đường phân giác y = x và y = −x của các góc tọa độ.
C. Trục ảo.
D. Trục thực.
Câu 4. Cho hình chóp S .ABCD có
√ đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm của


AD, biết S√H ⊥ (ABCD), S A = a 5. Thể tích khối chóp S .ABCD là

4a3
2a3
2a3 3
4a3 3
.
B.
.
C.
.
D.
.
A.
3
3
3
3
Câu 5. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (2; +∞).
B. (0; 2).
C. R.
D. (−∞; 1).
Z 3
x
a
a
Câu 6. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá trị


d
d
0 4+2 x+1
P = a + b + c + d bằng?
A. P = 16.
B. P = −2.
C. P = 4.
D. P = 28.
Câu 7. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tứ giác và một hình chóp ngũ giác.
B. Một hình chóp tam giác và một hình chóp tứ giác.
C. Hai hình chóp tam giác.
D. Hai hình chóp tứ giác.
Câu 8. [1-c] Giá trị của biểu thức
A. −4.

log7 16
log7 15 − log7

B. 2.

15
30

bằng
C. 4.

Câu 9. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.

B. 1.
C. Vơ nghiệm.
Câu 10.

D. −2.
D. 2.

[3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23
√ i
h
3

0 có ít nhất một nghiệm thuộc đoạn 1; 3
A. m ∈ [−1; 0].
B. m ∈ [0; 4].

C. m ∈ [0; 2].

q
x+ log23 x + 1+4m−1 =

D. m ∈ [0; 1].

Câu 11. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số đồng biến trên khoảng (1; 2).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng (−∞; 0).
Câu 12. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh

A, B, C, M, N, P bằng
Trang 1/11 Mã đề 1



20 3
A.
.
3
Câu 13. Tính lim
A. +∞.

B. 6 3.


C. 8 3.


14 3
D.
.
3

B. 3.

C. −3.

D. 6.




x→3

x2 − 9
x−3

Câu 14. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 3
a3 5
a3 5
.
B.
.
C.
.
D.
.
A.
6
4
12
12
Câu 15. Dãy số
!n nào có giới hạn bằng 0?
!n
−2
6

A. un =
.
B. un =
.
3
5

C. un =

n3 − 3n
.
n+1

D. un = n2 − 4n.

Câu 16.
Z Trong cácα+1khẳng định sau, khẳng định nào sai? Z
x
+ C, C là hằng số.
B.
dx = x + C, C là hằng số.
A.
xα dx =
α+1
Z
Z
1
C.
dx = ln |x| + C, C là hằng số.
D.

0dx = C, C là hằng số.
x
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 17. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là



a3 3
a3 3
a3 2
A.
.
B.
.
C.
.
D. 2a2 2.
12
24
24
Câu 18.
√ Thể tích của khối lăng√trụ tam giác đều có cạnh bằng 1 là:
3
3
3
A.
.
B.

.
C. .
2
4
4


3
D.
.
12

Câu 19. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 220 triệu.
B. 216 triệu.
C. 210 triệu.
D. 212 triệu.
Câu 20. Trong các mệnh đề dưới đây, mệnh đề nào
! sai?
un
= +∞.
A. Nếu lim un = a > 0 và lim vn = 0 thì lim
vn
B. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un

= −∞.
C. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
vn
!
un
D. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
9x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9x + 3
1
A. 1.
B. 2.
C. −1.
D. .
2
d = 300 .
Câu 22. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
0
Độ dài cạnh bên CC = 3a. Thể tích V √của khối lăng trụ đã cho.


a3 3
3a3 3
3
3
A. V = 3a 3.
B. V =
.

C. V = 6a .
D. V =
.
2
2
Câu 21. [2-c] Cho hàm số f (x) =

Trang 2/11 Mã đề 1


Câu 23. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 2.
B. 3.
C. 0.

D. 1.

Câu 24. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



3
5a 3
a3 3
2a3 3
4a3 3
A.

.
B.
.
C.
.
D.
.
3
2
3
3
ln2 x
m
Câu 25. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 24.
B. S = 22.
C. S = 32.
D. S = 135.
Câu 26. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 14 năm.
C. 10 năm.
D. 11 năm.

Câu 27. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 6 lần.
B. Tăng gấp 4 lần.
C. Tăng gấp đôi.
D. Tăng gấp 8 lần.
Câu 28. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a 3
a
a
B. a.
C.
.
D. .
A. .
2
2
3
2
2
Câu 29. Tìm giá trị nhỏ nhất của hàm số y = (x − 2x + 3) − 7
A. Không tồn tại.
B. −7.
C. −3.
D. −5.
Câu 30. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn

ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 20 .(3)30
C 40 .(3)10
C 20 .(3)20
C 10 .(3)40
B. 50 50 .
C. 50 50 .
D. 50 50 .
A. 50 50 .
4
4
4
4
x
x
x
Câu 31. [2] Tổng các nghiệm của phương trình 6.4 − 13.6 + 6.9 = 0 là
A. 3.
B. 2.
C. 1.
D. 0.
Câu 32. Cho
Z hai hàm yZ= f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
B. Nếu
f (x)dx =

g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
D. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Câu 33. Tính lim
x→2
A. 1.

x+2
bằng?
x
B. 0.

C. 2.

D. 3.

Câu 34. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = − loga 2.
B. log2 a =

.
C. log2 a = loga 2.
D. log2 a =
.
loga 2
log2 a
Trang 3/11 Mã đề 1


Câu 35. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; +∞).
B. (−∞; 2).

C. (−∞; 0) và (2; +∞). D. (0; 2).

1 − n2
Câu 36. [1] Tính lim 2
bằng?
2n + 1
1
1
1
B. − .
C. 0.
D. .
A. .
3
2
2
x

Câu 37. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 ) = 2 − x bằng
A. 1.
B. 2.
C. 3.
D. 7.
Câu 38. Khối đa diện đều loại {4; 3} có số cạnh
A. 30.
B. 20.
C. 12.
D. 10.
!
!
!
4x
1
2
2016
Câu 39. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 2017.
B. T =
.
C. T = 2016.

D. T = 1008.
2017
log(mx)
= 2 có nghiệm thực duy nhất
Câu 40. [3-1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m < 0.
B. m < 0 ∨ m = 4.
C. m < 0 ∨ m > 4.
D. m ≤ 0.
2
x
Câu 41. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
B. M = e, m = 0.
C. M = e, m = 1.
D. M = , m = 0.
A. M = e, m = .
e
e
Câu 42. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. 3n3 lần.
B. n lần.
C. n3 lần.
D. n2 lần.
Câu 43. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1637

1728
23
1079
.
B.
.
C.
.
D.
.
A.
4913
4913
4913
68
Câu 44.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nàoZsai?
A.
Z
C.

( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.

f (x)g(x)dx =


B.
Z
D.

f (x)dx g(x)dx.
Z
Z
( f (x) − g(x))dx =
f (x)dx − g(x)dx.

Câu 45. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 3
a 6
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
24

24
8
48
Câu 46. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
Câu 47. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng là hình lăng trụ đều.
B. Hình lăng trụ tứ giác đều là hình lập phương.
C. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
Câu 48. Bát diện đều thuộc loại
A. {3; 3}.
B. {5; 3}.

C. {3; 4}.

D. {4; 3}.
Trang 4/11 Mã đề 1


Câu 49. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 11.
B. 10.
C. 12.
D. 4.
Câu 50. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?

A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 51. Khối đa diện đều loại {3; 5} có số cạnh
A. 12.
B. 30.

C. 8.

D. 20.


Câu 52. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã



√ cho là
πa3 3
πa3 3
πa3 6
πa3 3
.
B. V =
.
C. V =
.
D. V =
.

A. V =
3
6
2
6
Câu 53. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng



a 3
a 3
2a 3
A.
.
B.
.
C.
.
D. a 3.
3
2
2
Câu 54. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn mặt.
B. Hai mặt.
C. Ba mặt.
D. Năm mặt.
Câu 55. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α


C. aαβ = (aα )β .
D. aα bα = (ab)α .
A. aα+β = aα .aβ .
B. β = a β .
a
2

Câu 56. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 8.
B. 7.
C. 6.

D. 5.

Câu 57. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 6510 m.
B. 2400 m.
C. 1202 m.
D. 1134 m.
1
2mx + 1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
Câu 58. Giá trị lớn nhất của hàm số y =
m−x
3
A. 1.
B. 0.
C. −2.

D. −5.
Câu 59. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
n−1
Câu 60. Tính lim 2
n +2
A. 3.
B. 0.
C. 1.
D. 2.
 π
Câu 61. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


3 π6
1 π3
2 π4
e .
C. e .
D.
e .
A. 1.
B.
2
2
2

Câu 62. Cho hình chóp S .ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là√

a3
a3
2a3 3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
6
3
3
Câu 63. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
với
đáy

S
C
=
a
3. √

Thể tích khối chóp S .ABC√là


3
3
a 3
a 6
a3 3
2a3 6
A.
.
B.
.
C.
.
D.
.
4
12
2
9
Trang 5/11 Mã đề 1


Câu 64. Tính mơ đun của số phức z√biết (1 + 2i)z2 = 3 + 4i. √
4
A. |z| = 5.
B. |z| = 5.
C. |z| = 2 5.


D. |z| =


5.

Câu 65. [2] Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8 √
C. m = ±3.
D. m = ± 2.
A. m = ±1.
B. m = ± 3.
Câu 66. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 27 lần.
B. Tăng gấp 3 lần.
C. Tăng gấp 9 lần.
D. Tăng gấp 18 lần.
1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y


9 11 − 19
18 11 − 29
C. Pmin =
. D. Pmin =
.
9
21

Câu 67. [12210d] Xét các số thực dương x, y thỏa mãn log3


Pmin của P = x√+ y.

9 11 + 19
2 11 − 3
A. Pmin =
. B. Pmin =
.
9
3
Câu 68. [1] Đạo hàm của làm số y = log x là
ln 10
1
1
1
B. y0 =
.
C.
.
D. y0 =
.
A. y0 = .
x
x
10 ln x
x ln 10
mx − 4
Câu 69. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m

A. 45.
B. 34.
C. 26.
D. 67.
log2 240 log2 15
Câu 70. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. 1.
B. 4.
C. −8.
D. 3.

Câu 71. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −e2 .
B. 2e2 .
C. 2e4 .
D. −2e2 .
1
Câu 72. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 2.
B. 4.
C. 3.
D. 1.
[ = 60◦ , S O
Câu 73. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc

√ với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S√BC) bằng

a 57
a 57
2a 57
A.
.
B.
.
C.
.
D. a 57.
17
19
19
Câu 74. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
C. 2.
D.
.
A. 1.
B. .
2
2
Câu 75. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 10 cạnh, 6 mặt.

D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 76. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình tam giác.
B. Hình lăng trụ.
C. Hình lập phương.

D. Hình chóp.

Câu 77. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


a3 3
a3 2
a3 3
a3 6
A.
.
B.
.
C.
.
D.
.
48
16
24
48
2


Câu 78. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
1
A. √ .
B.
.
C.
.
2e3
e2
2 e

D.

2
.
e3
Trang 6/11 Mã đề 1


Câu 79. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. (−∞; −3].
B. [−1; 3].
C. [−3; 1].
D. [1; +∞).
Câu 80. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1

1
1
B. − 2 .
C. −e.
D. − .
A. − .
2e
e
e
ln x p 2
1
Câu 81. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
1
1
8
A. .
B. .
C. .
D. .
9
3
9
3
Câu 82. Khối đa diện đều loại {3; 4} có số mặt
A. 6.
B. 12.

C. 10.
D. 8.
log 2x
Câu 83. [3-1229d] Đạo hàm của hàm số y =

x2
1 − 4 ln 2x
1 − 2 ln 2x
1 − 2 log 2x
1
A. y0 =
.
B. y0 = 3
.
C. y0 =
.
D. y0 = 3
.
3
3
2x ln 10
x ln 10
x
2x ln 10
Câu 84. Khối đa diện đều loại {4; 3} có số đỉnh
A. 4.
B. 10.
C. 6.
D. 8.
2

2n − 1
Câu 85. Tính lim 6
3n + n4
2
A. 1.
B. .
C. 2.
D. 0.
3
Câu 86. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
A. 5.
B.
.
C. .
D. 7.
2
2




Câu 87. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
9
3
3
A. 0 ≤ m ≤ .
B. 0 < m ≤ .
C. m ≥ 0.

D. 0 ≤ m ≤ .
4
4
4
2
Câu 88. [3-1224d] Tìm tham số thực m để phương trình log3 x + log3 x + m = 0 có nghiệm
1
1
1
1
B. m < .
C. m > .
D. m ≤ .
A. m ≥ .
4
4
4
4
√3
4
Câu 89. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
7
2
5
5
B. a 3 .
C. a 3 .
D. a 3 .
A. a 8 .
2


2

Câu 90. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun √
z.



5 13
A.
.
B. 26.
C. 2.
D. 2 13.
13
Câu 91.
√ [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 10.
B. 2.
C. 2.
D. 1.
Câu 92. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng số cạnh của khối chóp.
B. Số mặt của khối chóp bằng 2n+1.
C. Số cạnh của khối chóp bằng 2n.
D. Số đỉnh của khối chóp bằng 2n + 1.
Câu 93. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là

A. 20, 128 triệu đồng. B. 50, 7 triệu đồng.
C. 3, 5 triệu đồng.
D. 70, 128 triệu đồng.
Trang 7/11 Mã đề 1


Câu 94. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) = 10.
B. f 0 (0) =
.
C. f 0 (0) = 1.
ln 10

D. f 0 (0) = ln 10.

π
Câu 95. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu thức T = a + b 3.


A. T = 2.
B. T = 3 3 + 1.
C. T = 4.
D. T = 2 3.
4x + 1
bằng?
Câu 96. [1] Tính lim

x→−∞ x + 1
A. −4.
B. 4.
C. −1.
D. 2.
!x
1
Câu 97. [2] Tổng các nghiệm của phương trình 31−x = 2 +

9
A. − log3 2.
B. 1 − log2 3.
C. log2 3.
D. − log2 3.
Z 1
Câu 98. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

1
C. .
4

Câu 99. Thể tích của khối lập phương có cạnh bằng a 2 √


2a3 2
A. V = a3 2.
B. 2a3 2.
C.

.
3
Câu 100. Khối đa diện đều loại {3; 3} có số mặt
A. 3.
B. 5.
C. 4.
x+1
bằng
Câu 101. Tính lim
x→+∞ 4x + 3
1
A. 3.
B. 1.
C. .
3
A. 0.

B. 1.

D.

1
.
2

D. V = 2a3 .
D. 2.

1
.

4
!
3n + 2
2
Câu 102. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 5.
B. 4.
C. 2.
D. 3.
D.

Câu 103. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = R \ {1}.

C. D = R \ {0}.
D. D = (0; +∞).
1
Câu 104. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 0 < m ≤ 1.
C. 2 ≤ m ≤ 3.
D. 0 ≤ m ≤ 1.
3

Câu 105. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là

A. e.
B. e2 .
C. e3 .
1 − 2n
bằng?
Câu 106. [1] Tính lim
3n + 1
2
2
A. − .
B. .
C. 1.
3
3
3
2
Câu 107. Giá
√ trị cực đại của hàm số y√= x − 3x − 3x + 2 √
A. 3 − 4 2.
B. −3 + 4 2.
C. 3 + 4 2.
cos n + sin n
Câu 108. Tính lim
n2 + 1
A. 1.
B. +∞.
C. 0.
2n − 3
Câu 109. Tính lim 2
bằng

2n + 3n + 1
A. +∞.
B. 0.
C. −∞.

D. e5 .

D.

1
.
3


D. −3 − 4 2.

D. −∞.
D. 1.
Trang 8/11 Mã đề 1


Câu 110. Trong các khẳng định sau, khẳng định nào sai?
A. Cả ba đáp án trên.
B. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.

C. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
D. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
Câu 111. Dãy số nào sau đây có giới hạn khác 0?
1
n+1

A. √ .
B.
.
n
n

C.

sin n
.
n

D.

1
.
n

Câu 112. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
C. T = e + 3.
D. T = e + .
A. T = e + 1.
B. T = 4 + .
e
e
Câu 113. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −3 ≤ m ≤ 3.

B. m ≥ 3.
C. −2 ≤ m ≤ 2.
D. m ≤ 3.
Câu 114. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn
nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
(1, 01)3
100.(1, 01)3
triệu.
B. m =
triệu.
A. m =
3
(1, 01)3 − 1
100.1, 03
120.(1, 12)3
C. m =
triệu.
D. m =
triệu.
3
(1, 12)3 − 1

Câu 115. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh
bên S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng




3a 58
a 38
3a 38
3a
.
B.
.
C.
.
D.
.
A.
29
29
29
29
Câu 116. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng
(cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 16 tháng.
B. 18 tháng.
C. 17 tháng.
D. 15 tháng.
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
n2 + 1
1
A. Dãy số un khơng có giới hạn khi n → +∞.

B. lim un = .
2
C. lim un = 1.
D. lim un = 0.

Câu 117. [3-1132d] Cho dãy số (un ) với un =

Câu 118. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Khơng có.
B. Có hai.
C. Có một hoặc hai.
D. Có một.
1
Câu 119. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 < m < −1.
B. (−∞; −2] ∪ [−1; +∞). C. (−∞; −2) ∪ (−1; +∞). D. −2 ≤ m ≤ −1.
Trang 9/11 Mã đề 1


Câu 120. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
z
x+1 y−5
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
d:
2

2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (1; 0; 2).
B. ~u = (2; 2; −1).
C. ~u = (2; 1; 6).
D. ~u = (3; 4; −4).
2n + 1
Câu 121. Tìm giới hạn lim
n+1
A. 2.
B. 1.
C. 0.
D. 3.
3
x −1
Câu 122. Tính lim
x→1 x − 1
A. +∞.
B. 3.
C. −∞.
D. 0.
Câu 123. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 1200 cm2 .
B. 120 cm2 .
C. 160 cm2 .
D. 160 cm2 .
Câu 124. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).

B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
Câu 125. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n3 lần.
C. 2n2 lần.
D. n3 lần.
Câu 126. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 2020.
B. log2 13.
C. 2020.
D. 13.
Câu 127. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất
điểm đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 16 m.
B. 12 m.
C. 24 m.
D. 8 m.
Câu 128. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −5.
B. x = −8.
C. x = 0.

D. x = −2.

Câu 129. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.

Trong hai khẳng định trên
A. Cả hai đều đúng.
B. Cả hai đều sai.
Câu 130. [1] Tập xác định của hàm số y = 4
A. D = (−2; 1).
B. D = [2; 1].

x2 +x−2

C. Chỉ có (I) đúng.

D. Chỉ có (II) đúng.

C. D = R.

D. D = R \ {1; 2}.



- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
C

1.

3.

B

4.

5.

B

6.

7.
9.

C

2.
B

C

8. A

C
B

10. A

11. A


12.
D

13.

B
D

14.

15. A

16. A

17.

18.

C
D

19.

B

20. A
22.

21. A

23.

C

24.

25.

C

26.
D

27.

28.

D
B
D
B
D

30.

29. A
D

31.


C

32.

33.

C

34.

B

35.

C

36.

B

37.

B

38.

39.

D


40.

C
B

41.

B

42.

43.

B

44.

B

45.

B

46.

B

47.

C


48.

49.

C

50. A

51.

B

C

52. A

53. A
55.

C

54.
B

C

56.

B


57. A

58.

B

59. A

60.

B

61.
63.

B

65.
67.

62.

D

64.
D

D
B


66. A
68.

B
1

D


69.

70.

B
B
D

76. A

77. A

78.

79.
B

82.

D


84.

D

85.

D

86.

87.

D

88.

89.

C
D

90. A

C

91.

C


80. A

C

81. A

D

92.

C

94.

93. A

96.

C

95.
97.
99.

C

74.

75.


83.

D

72.

71. A
73.

C

D
B

98.

D
B

D

100.

101.

D

102.

103. A


C
B

104. A
D

105.

106. A

107.

B

108.

C

109.

B

110.

C

111.

B


112.

C

113. A

114.

115.

B

116. A

117.

B

118.
D

119.

C

120. A

121. A
123.


B

122.

B

124. A

C

125. A

126.

B

127. A

128.

B

129.

D

130.

2


C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×