TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 11 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
9t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9t + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. Vô số.
B. 0.
C. 2.
D. 1.
Câu 1. [4] Xét hàm số f (t) =
Câu 2. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
B. m ≤ 0.
C. m > − .
D. m ≥ 0.
A. − < m < 0.
4
4
2x + 1
Câu 3. Tính giới hạn lim
x→+∞ x + 1
1
A. 2.
B. −1.
C. 1.
D. .
2
Câu 4. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là
√
√ hình chóp S .ABCD với mặt
2
2
2
a 7
11a
a2 5
a 2
.
B.
.
C.
.
D.
.
A.
4
8
32
16
Câu 5. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng 2n + 1.
B. Số mặt của khối chóp bằng 2n+1.
C. Số mặt của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh của khối chóp bằng 2n.
Câu 6. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
A. 2e + 1.
B. 2e.
C.
2
.
e
Câu 7. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 1.
C. 3.
1
Câu 8. [1] Giá trị của biểu thức log √3
bằng
10
1
A. .
B. 3.
3
1
C. − .
3
D. 3.
D. 2.
D. −3.
Câu 9. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−1; 3].
B. (−∞; −3].
C. [1; +∞).
D. [−3; 1].
Z 1
6
2
3
Câu 10. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
. Tính
f (x)dx.
0
3x + 1
A. 6.
B. −1.
C. 2.
D. 4.
Câu 11. Khối đa diện đều loại {3; 5} có số mặt
A. 12.
B. 20.
C. 30.
D. 8.
Câu 12. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.
C. Khối 12 mặt đều.
D. Khối 20 mặt đều.
Trang 1/11 Mã đề 1
Câu 13. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (III).
B. (I) và (II).
C. (II) và (III).
D. Cả ba mệnh đề.
Câu 14. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
A. aα bα = (ab)α .
B. aα+β = aα .aβ .
Câu 15. Khối đa diện đều loại {3; 5} có số cạnh
A. 20.
B. 12.
α
aα
= aβ .
β
a
C. aαβ = (aα )β .
D.
C. 8.
D. 30.
Câu 16. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 5 mặt.
B. 4 mặt.
C. 3 mặt.
D. 6 mặt.
Câu 17. Khối đa diện đều loại {3; 4} có số cạnh
A. 12.
B. 10.
D. 8.
C. 6.
Câu 18. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e−2 + 2; m = 1.
C. M = e−2 + 1; m = 1.
D. M = e2 − 2; m = e−2 + 2.
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử
Câu 19. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
của S bằng
A. 4.
B. 5.
C. 3.
D. 2.
2
Câu 20. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 4.
B. 5.
C. 2.
D. 3.
2
3
7n − 2n + 1
Câu 21. Tính lim 3
3n + 2n2 + 1
7
2
A. 0.
B. .
C. - .
D. 1.
3
3
Câu 22. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
B. F(x) = G(x) trên khoảng (a; b).
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. Cả ba câu trên đều sai.
x−1 y z+1
= =
và
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 10x − 7y + 13z + 3 = 0.
B. 2x + y − z = 0.
C. −x + 6y + 4z + 5 = 0.
D. 2x − y + 2z − 1 = 0.
Câu 23. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
Câu 24. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
Trang 2/11 Mã đề 1
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều sai.
B. Cả hai đều đúng.
C. Chỉ có (I) đúng.
D. Chỉ có (II) đúng.
d = 120◦ .
Câu 25. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 3a.
B.
.
C. 2a.
D. 4a.
2
Câu 26. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −10.
B. P = 21.
C. P = −21.
D. P = 10.
Câu 27. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB)
√ bằng
√
√
√
a 6
.
B. 2a 6.
C. a 3.
D. a 6.
A.
2
x2
Câu 28. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 0.
B. M = , m = 0.
C. M = e, m = .
D. M = e, m = 1.
e
e
√3
4
Câu 29. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
5
7
2
B. a 3 .
C. a 8 .
D. a 3 .
A. a 3 .
Câu 30. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e2 .
B. 2e4 .
C. −e2 .
D. −2e2 .
Câu 31. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|
√
√
√
√
12 17
A. 68.
.
B. 5.
C. 34.
D.
17
Câu 32. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. −e.
B. − 2 .
D. − .
C. − .
e
2e
e
x
9
Câu 33. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. 2.
B. 1.
C. −1.
D. .
2
Câu 34.
Z Trong các khẳng định sau, khẳng định nào sai? Z
dx = x + C, C là hằng số.
A.
Z
C.
0dx = C, C là hằng số.
B.
Z
D.
xα dx =
xα+1
+ C, C là hằng số.
α+1
1
dx = ln |x| + C, C là hằng số.
x
Câu 35. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 3ac
A.
.
B.
.
C.
.
c+3
c+1
c+2
Câu 36. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = ln x − 1.
B. y0 = x + ln x.
C. y0 = 1 + ln x.
Câu 37. [12214d] Với giá trị nào của m thì phương trình
A. 0 < m ≤ 1.
B. 2 < m ≤ 3.
1
3|x−2|
D.
3b + 2ac
.
c+2
D. y0 = 1 − ln x.
= m − 2 có nghiệm
C. 2 ≤ m ≤ 3.
D. 0 ≤ m ≤ 1.
Trang 3/11 Mã đề 1
Câu 38. Tính lim
x→3
A. 6.
x2 − 9
x−3
B. +∞.
C. −3.
Câu 39. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 3.
B. 1.
C. 4.
D. 3.
1
3|x−1|
= 3m − 2 có nghiệm duy
D. 2.
Câu 40. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng
√
√
√
a 3
a 3
2a 3
.
B. a 3.
.
D.
.
A.
C.
3
2
2
Câu 41. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m < .
C. m > .
D. m ≤ .
4
4
4
4
Z 1
Câu 42. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0
1
1
B. 1.
C. .
D. 0.
A. .
4
2
Câu 43. Cho số phức z thỏa mãn |z +
√
√ 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
A. |z| = 10.
B. |z| = 10.
C. |z| = 17.
D. |z| = 17.
Câu 44. Mệnh đề nào sau đây sai?
A. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
B. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
!0
Z
C.
f (x)dx = f (x).
Z
D. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
Câu 45. [1] Đạo hàm của làm số y = log x là
1
1
1
A. y0 =
.
B. y0 = .
C.
.
x ln 10
x
10 ln x
Câu 46. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 13.
C. 0.
D. y0 =
ln 10
.
x
D. 9.
Câu 47. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P hoặc d ⊥ P.
B. d ⊥ P.
C. d song song với (P).
D. d nằm trên P.
Câu 48. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 6 mặt.
C. 4 mặt.
D. 9 mặt.
!
x+1
Câu 49. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2017
4035
2016
A.
.
B.
.
C. 2017.
D.
.
2018
2018
2017
Câu 50. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x y−2 z−3
x−2 y−2 z−3
A. =
=
.
B.
=
=
.
2
3
−1
2
3
4
x−2 y+2 z−3
x y z−1
C.
=
=
.
D. = =
.
2
2
2
1 1
1
Trang 4/11 Mã đề 1
Câu 51. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
C là
√
√
3
a3
a3 3
a 3
3
A.
.
B.
.
C. a .
D.
.
2
3
6
Câu 52. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4
√
√
√
√
a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
36
12
24
6
Câu 53. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt phẳng vng góc với (ABCD).
Thể tích khối chóp
√ S .ABCD là
√
3
3
3
√
a 3
a 3
a 2
A.
.
B. a3 3.
C.
.
D.
.
4
2
2
Câu 54. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n2 lần.
B. n3 lần.
C. n3 lần.
D. 2n3 lần.
Câu 55. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 56. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
ab
ab
1
A. √
.
B. √
.
C. 2
.
D.
.
√
a + b2
a2 + b2
a2 + b2
2 a2 + b2
π
Câu 57. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3
√
trị của biểu √
thức T = a + b 3.
√
A. T = 2 3.
B. T = 3 3 + 1.
C. T = 4.
D. T = 2.
Câu 58.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
[ f (x) + g(x)]dx =
A.
f (x)dx +
g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
C.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
D.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
B.
x+1
bằng
x→−∞ 6x − 2
1
B. .
6
Câu 59. Tính lim
A. 1.
C.
1
.
3
D.
1
.
2
Câu 60. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −8.
B. x = 0.
C. x = −5.
D. x = −2.
Câu 61. Dãy số
!n nào có giới hạn bằng3 0?
−2
n − 3n
A. un =
.
B. un =
.
3
n+1
!n
6
D. un =
.
5
C. un = n − 4n.
2
Trang 5/11 Mã đề 1
x−3 x−2 x−1
x
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [2; +∞).
B. (2; +∞).
C. (−∞; 2).
D. (−∞; 2].
!x
1
là
Câu 63. [2] Tổng các nghiệm của phương trình 31−x = 2 +
9
A. − log2 3.
B. 1 − log2 3.
C. − log3 2.
D. log2 3.
Câu 62. [4-1213d] Cho hai hàm số y =
Câu 64.
√ Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.
A. 3 3.
B. 9.
C. 8.
D. 27.
Câu 65. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 24 m.
B. 16 m.
C. 8 m.
D. 12 m.
Câu 66. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m < 3.
C. m ≥ 3.
D. m > 3.
Câu 67. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = 6.
C. y(−2) = 2.
D. y(−2) = −18.
Câu 68. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 9 lần.
B. Tăng gấp 27 lần.
C. Tăng gấp 3 lần.
D. Tăng gấp 18 lần.
Câu 69. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; 8).
B. A(−4; −8)(.
C. A(4; −8).
D. A(−4; 8).
√
Câu 70. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 1 nghiệm.
B. 2 nghiệm.
C. Vô nghiệm.
D. 3 nghiệm.
Câu 71. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Hai đường phân giác y = x và y = −x của các góc tọa độ.
B. Trục ảo.
C. Trục thực.
D. Đường phân giác góc phần tư thứ nhất.
Câu 72. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 4.
B. 0, 3.
C. 0, 5.
D. 0, 2.
Câu 73. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm cạnh.
B. Hai cạnh.
C. Bốn cạnh.
−2x2
Câu 74. [2-c] Giá trị lớn nhất của hàm số y = xe
1
1
A. 2 .
B.
.
e
2e3
trên đoạn [1; 2] là
2
C. 3 .
e
D. Ba cạnh.
D.
1
√ .
2 e
Câu 75. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (−∞; 2).
C. Hàm số đồng biến trên khoảng (0; +∞).
D. Hàm số nghịch biến trên khoảng (0; 2).
x
x+1
x−2 x−1
Câu 76. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3].
B. (−∞; −3).
C. (−3; +∞).
D. [−3; +∞).
Trang 6/11 Mã đề 1
Câu 77. Khối đa diện đều loại {3; 4} có số mặt
A. 10.
B. 8.
C. 12.
D. 6.
Câu 78. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 1587 m.
B. 25 m.
C. 27 m.
D. 387 m.
Câu 79. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 80. Khối đa diện đều loại {4; 3} có số đỉnh
A. 8.
B. 6.
2n − 3
Câu 81. Tính lim 2
bằng
2n + 3n + 1
A. 0.
B. −∞.
x−3
Câu 82. [1] Tính lim
bằng?
x→3 x + 3
A. +∞.
B. 1.
C. 10.
D. 4.
C. 1.
D. +∞.
C. 0.
D. −∞.
Câu 83. Khối lập phương thuộc loại
A. {4; 3}.
B. {3; 4}.
C. {3; 3}.
D. {5; 3}.
1
Câu 84. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 2 ≤ m ≤ 3.
C. 2 < m ≤ 3.
D. 0 ≤ m ≤ 1.
Câu 85. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 6).
B. (1; 3; 2).
C. (2; 4; 4).
D. (2; 4; 3).
Câu 86. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là
√
√
√
2a3 3
4a3 3
a3 3
5a3 3
.
B.
.
C.
.
D.
.
A.
3
3
3
2
Câu 87. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 1.
B. 2.
C. 6.
D. −1.
Câu 88. Khối đa diện đều loại {4; 3} có số cạnh
A. 20.
B. 12.
C. 10.
D. 30.
Câu 89. Khối chóp ngũ giác có số cạnh là
A. 11 cạnh.
B. 9 cạnh.
C. 12 cạnh.
D. 10 cạnh.
Câu 90. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 24.
B. S = 22.
ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
C. S = 135.
D. S = 32.
Câu 91. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 10 mặt.
B. 4 mặt.
C. 6 mặt.
D. 8 mặt.
Câu 92. [1] Tập
! xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
A. −∞; − .
B.
; +∞ .
C. −∞; .
2
2
2
!
1
D. − ; +∞ .
2
Trang 7/11 Mã đề 1
Câu 93. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. 3.
C. 1.
D. Vô nghiệm.
Câu 94. Khối đa diện đều loại {3; 5} có số đỉnh
A. 30.
B. 8.
C. 12.
D. 20.
Câu 95. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một mơn nằm cạnh nhau là
1
2
9
1
A. .
B. .
C.
.
D.
.
5
5
10
10
Câu 96. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 8π.
B. V = 4π.
C. 32π.
D. 16π.
Câu 97. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1202 m.
B. 1134 m.
C. 6510 m.
D. 2400 m.
Câu 98. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R.
B. D = (−2; 1).
C. D = R \ {1; 2}.
2
D. D = [2; 1].
Câu 99. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng
√
a
a
a 3
A. .
B. .
C.
.
D. a.
3
2
2
Câu 100. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 0.
B. e2016 .
C. 22016 .
D. 1.
Câu 101. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n3 lần.
B. n lần.
C. 3n3 lần.
D. n2 lần.
Câu 102. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −5.
B. 6.
C. −6.
√
√
4n2 + 1 − n + 2
bằng
Câu 103. Tính lim
2n − 3
3
A. 1.
B. .
C. +∞.
2
√
Câu 104. Thể tích của khối lập phương có cạnh bằng a 2
√
√
A. 2a3 2.
B. V = 2a3 .
C. V = a3 2.
2
D. 5.
D. 2.
√
2a3 2
D.
.
3
ln x p 2
1
Câu 105. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
1
8
1
A. .
B. .
C. .
D. .
3
9
9
3
Câu 106. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. 2.
C. 1.
D. Vơ nghiệm.
Câu 107. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Tăng lên n lần.
B. Không thay đổi.
C. Giảm đi n lần.
D. Tăng lên (n − 1) lần.
Câu 108. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 7 mặt.
D. 8 mặt.
Trang 8/11 Mã đề 1
Câu 109. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 + 2e
1 + 2e
A. m =
.
B. m =
.
C. m =
.
4e + 2
4e + 2
4 − 2e
Câu 110. [1] Đạo hàm của hàm số y = 2 x là
1
1
A. y0 = x
.
B. y0 =
.
2 . ln x
ln 2
C. y0 = 2 x . ln 2.
D. m =
1 − 2e
.
4 − 2e
D. y0 = 2 x . ln x.
Câu 111. Tính diện tích hình phẳng
giới hạn bởi các đường y = xe x , y = 0, x = 1.
√
3
3
1
A. .
B.
.
C. 1.
D. .
2
2
2
Câu 112. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 1.
B. 3.
C. 0.
1 − n2
bằng?
Câu 113. [1] Tính lim 2
2n + 1
1
1
A. .
B. .
3
2
1
C. − .
2
D. 2.
D. 0.
√
Câu 114. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√
√
√
√ cho là
πa3 3
πa3 3
πa3 6
πa3 3
.
B. V =
.
C. V =
.
D. V =
.
A. V =
3
6
2
6
Câu 115. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {5; 3}.
B. {3; 4}.
C. {4; 3}.
D. {3; 3}.
√
Câu 116. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả
bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 63.
C. Vơ số.
D. 62.
2n + 1
Câu 117. Tính giới hạn lim
3n + 2
2
3
1
A. .
B. .
C. .
D. 0.
3
2
2
Câu 118. [1] Giá trị của biểu thức 9log3 12 bằng
A. 2.
B. 24.
C. 144.
Câu 119. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 0.
B. m > −1.
C. m > 1.
D. 4.
D. m ≥ 0.
Câu 120. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số nghịch biến trên khoảng (−2; 1).
C. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
Câu 121. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (II) đúng.
B. Cả hai câu trên sai.
C. Cả hai câu trên đúng. D. Chỉ có (I) đúng.
Trang 9/11 Mã đề 1
Câu 122. Tính lim
A. 2.
2n2 − 1
3n6 + n4
B. 1.
C.
2
.
3
D. 0.
π
Câu 123. [2-c] Giá trị lớn nhất của hàm số y = e cos x trên đoạn 0; là
2
√
√
3 π6
1 π3
2 π4
A. 1.
B.
e .
e .
C. e .
D.
2
2
2
Câu 124. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 5 mặt. D. 5 đỉnh, 9 cạnh, 6 mặt.
x
Câu 125. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
5a
2a
a
8a
.
B.
.
C.
.
D. .
A.
9
9
9
9
Câu 126. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 3, 03 triệu đồng.
B. 2, 20 triệu đồng.
C. 2, 22 triệu đồng.
D. 2, 25 triệu đồng.
√
Câu 127. Xác định phần ảo của số√phức z = ( 2 + 3i)2 √
A. 7.
B. −6 2.
C. 6 2.
D. −7.
Câu 128. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .
B. m > .
C. m ≤ .
D. m ≥ .
4
4
4
4
Câu 129. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. 1.
B. .
C. .
D. 3.
2
2
x+1
bằng
Câu 130. Tính lim
x→+∞ 4x + 3
1
1
A. .
B. 1.
C. .
D. 3.
3
4
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/11 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
2.
C
3. A
4.
5.
7.
D
B
12.
13.
B
14.
15.
D
16.
17. A
18. A
19. A
20. A
C
D
B
D
24.
B
26.
27.
D
31.
D
B
35.
30.
C
32.
C
34.
C
B
38. A
39.
B
40. A
D
C
42.
C
44. A
B
45. A
46.
47. A
49. A
50.
D
B
53.
54.
B
55. A
56.
B
57.
58.
C
51. A
52.
D
59.
60. A
61. A
62. A
63. A
64. A
65.
66.
B
36.
37.
41.
C
28. A
29. A
68.
D
22. A
C
23. A
43.
C
10.
11.
33.
D
8.
B
9.
25.
B
6.
D
21.
C
67.
C
B
69. A
1
C
C
B
B
D
70.
B
71. A
72.
B
73.
74. A
75. A
76. A
77.
78.
81. A
82.
C
83. A
84.
C
85. A
D
86.
87.
D
91.
92.
D
93. A
94.
C
95.
97.
C
98. A
D
99.
D
C
C
100. A
101. A
102. A
103. A
104. A
105.
C
106.
107.
C
108. A
109. A
C
110.
C
C
111.
C
112.
113.
C
114. A
115. A
116.
117. A
118.
121.
C
89.
B
90.
119.
B
79. A
C
80. A
88.
D
D
C
120. A
B
122.
C
123.
D
125. A
D
124.
C
126.
C
127.
C
128.
C
129.
C
130.
C
2