Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (535)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (151.96 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

d = 300 .
Câu 1. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V của khối lăng trụ đã cho. √


3a3 3
a3 3
3
3
A. V = 3a 3.
B. V = 6a .
C. V =
.
D. V =
.
2
2
Câu 2. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
23
1079
1637


1728
.
B.
.
C.
.
D.
.
A.
4913
68
4913
4913
Câu 3. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 5.
C. 4.
D. 8.
Câu 4. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm tứ diện đều.
B. Một tứ diện đều và bốn hình chóp tam giác đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.
D. Bốn tứ diện đều và một hình chóp tam giác đều.
n−1
Câu 5. Tính lim 2
n +2
A. 2.

B. 3.


C. 0.

D. 1.

Câu 6. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Ba mặt.
B. Hai mặt.
C. Bốn mặt.

D. Một mặt.

Câu 7. Khối đa diện đều loại {4; 3} có số cạnh
A. 10.
B. 30.

D. 20.

C. 12.

Câu 8. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường thẳng
BB0 và AC 0 bằng
ab
1
ab
1
A. √
.
B. √
.

C. √
.
D. 2
.
2
2
2
2
2
2
a + b2
a +b
a +b
2 a +b
 π π
3
Câu 9. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 1.
B. 7.
C. −1.
D. 3.
Câu 10. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 3.
B. 2e + 1.
C. .
D. 2e.
e
Câu 11. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ

nhất của |z + 2 + i|




12 17
A. 5.
B.
.
C. 34.
D. 68.
17
Câu 12. Trong khơng gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 1).
B. A0 (−3; 3; 3).
C. A0 (−3; −3; 3).
D. A0 (−3; −3; −3).
!
3n + 2
2
Câu 13. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
Trang 1/11 Mã đề 1


A. 5.


B. 3.

C. 4.

Câu 14. Hàm số y = −x + 3x − 1 đồng biến trên khoảng nào dưới đây?
A. (2; +∞).
B. (0; 2).
C. (−∞; 1).
3

D. 2.

2

D. R.

Câu 15. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 4.
B. ln 14.
C. ln 10.
D. ln 12.
2−n
Câu 16. Giá trị của giới hạn lim
bằng
n+1
A. −1.
B. 0.
C. 2.
D. 1.
Câu 17. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?

A. Hàm số đồng biến trên khoảng (1; 2).
B. Hàm số nghịch biến trên khoảng (1; +∞).
C. Hàm số nghịch biến trên khoảng (−∞; 0).
D. Hàm số nghịch biến trên khoảng (0; 1).
Câu 18. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m ≥ 0.
B. m > −1.
C. m > 1.

D. m > 0.

Câu 19. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị
"
!
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới đây?
5
5
B. (1; 2).
C. [3; 4).
D.
;3 .
A. 2; .
2
2


ab.

Câu 20. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị

nhỏ nhất
√M + m
√ của hàm số. Khi đó tổng

A. 8 3.
B. 8 2.
C. 7 3.
D. 16.
Câu 21. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 27 lần.
B. Tăng gấp 3 lần.
C. Tăng gấp 9 lần.
D. Tăng gấp 18 lần.
1

Câu 22. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R.
B. D = R \ {1}.
C. D = (1; +∞).

D. D = (−∞; 1).

Câu 23. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
B. 6.
C. .
D. 9.

A. .
2
2
Câu 24.√Thể tích của tứ diện đều √
cạnh bằng a


3
3
a 2
a 2
a3 2
a3 2
A.
.
B.
.
C.
.
D.
.
6
2
12
4
Câu 25. [2] Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 2√
C. m = ±3.
D. m = ± 2.
A. m = ±1.
B. m = ± 3.

log(mx)
Câu 26. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m > 4.
B. m < 0 ∨ m = 4.
C. m < 0.
D. m ≤ 0.
Câu 27. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≤ 0.
B. m > − .
C. m ≥ 0.
D. − < m < 0.
4
4
Câu 28. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng 2n.
B. Số mặt của khối chóp bằng 2n+1.
C. Số mặt của khối chóp bằng số cạnh của khối chóp.
D. Số đỉnh của khối chóp bằng 2n + 1.
Trang 2/11 Mã đề 1


Câu 29. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.

D. 20 đỉnh, 30 cạnh, 12 mặt.
!
1
1
1
+
+ ··· +
Câu 30. Tính lim
1.2 2.3
n(n + 1)
3
.
2
Câu 31.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nào sai?
A.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
B.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
Z
Z
Z
Z
Z
Z
C.
( f (x) + g(x))dx =

f (x)dx + g(x)dx.
D.
f (x)g(x)dx =
f (x)dx g(x)dx.
A. 2.

B. 0.

C. 1.

D.

Câu 32. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 1.
B. 3.
C. 2.
D. 0.
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
Câu 33. [3-1214d] Cho hàm số y =
x+2
tam giác
B thuộc (C), đoạn thẳng AB
√ đều ABI có hai đỉnh A, √
√ có độ dài bằng
A. 6.
B. 2 2.
C. 2 3.
D. 2.
Câu 34. Khối lập phương thuộc loại

A. {4; 3}.
B. {5; 3}.

C. {3; 3}.

D. {3; 4}.

Câu 35. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai ngun hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (II) sai.

B. Câu (I) sai.

D. Khơng có câu nào
sai.
Câu 36. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt√bên (S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
3
3
3
3
8a 3
4a 3
8a 3
a 3
.

B.
.
C.
.
D.
.
A.
9
3
9
9
Câu 37. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 4 lần.
B. Tăng gấp 6 lần.
C. Tăng gấp đôi.
D. Tăng gấp 8 lần.
Câu 38. Bát diện đều thuộc loại
A. {3; 3}.
B. {4; 3}.

C. Câu (III) sai.

C. {3; 4}.

D. {5; 3}.

C. 2.

D. 0.


Câu 39. Giá trị của lim(2x2 − 3x + 1) là
A. +∞.

x→1

B. 1.

Câu 40. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d ⊥ P.
B. d nằm trên P.
C. d song song với (P).
D. d nằm trên P hoặc d ⊥ P.
Câu 41. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −3.
B. 0.
C. −6.
D. 3.
Trang 3/11 Mã đề 1


Câu 42. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (II).

B. Cả ba mệnh đề.


C. (I) và (III).

D. (II) và (III).

1
Câu 43. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.
A. −3 ≤ m ≤ 4.
B. m = −3, m = 4.
C. m = 4.
D. m = −3.
Câu 44. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n lần.
B. n3 lần.
C. n2 lần.
D. 3n3 lần.
Câu 45. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lập phương.
B. Khối lăng trụ tam giác.
C. Khối bát diện đều.
D. Khối tứ diện.
Câu 46. Khối đa diện đều loại {3; 4} có số mặt
A. 8.
B. 6.

C. 12.


D. 10.

Câu 47. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD

√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng


a 2
a 2
C. 2a 2.
D.
A.
.
B. a 2.
.
4
2
!2x−1
!2−x
3
3
Câu 48. Tập các số x thỏa mãn


5
5
A. [3; +∞).
B. (+∞; −∞).

C. (−∞; 1].
D. [1; +∞).
q
2
Câu 49. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [−1; 0].
C. m ∈ [0; 2].
D. m ∈ [0; 1].
Câu 50. Trong các khẳng định sau, khẳng định nào sai?√
A. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
B. Cả ba đáp án trên.
C. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
D. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
Câu 51. Tính lim

x→−∞

A. 1.

x+1
bằng
6x − 2
1
B. .
3


C.

1
.
6

D.

1
.
2

Câu 52. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là√
3
3
a
4a 3
2a3 3
a3
A.
.
B.
.
C.
.
D.
.
3

3
3
6
Trang 4/11 Mã đề 1


Câu 53. Giá trị lớn nhất của hàm số y =
A. 0.

B. −2.

2mx + 1
1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
C. 1.
D. −5.

Câu 54. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh đề nào dưới đây đúng?

!
1
B. Hàm số đồng biến trên khoảng ; 1 .
3
!
1
D. Hàm số nghịch biến trên khoảng ; 1 .
3


A. Hàm số nghịch biến trên khoảng (1; +∞).
!
1
C. Hàm số nghịch biến trên khoảng −∞; .
3
Z 2
ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
Câu 55. Cho
x2
1
A. −3.
B. 1.
C. 3.

D. 0.

d = 60◦ . Đường chéo
Câu 56. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
0
0 0
0 0

BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0





2a3 6

a3 6
4a3 6
3
C.
A.
.
B. a 6.
.
D.
.
3
3
3
Câu 57. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
=
=
và d0 :
=
=
đường thẳng d :
2
3
−5
3
−2
−1
x y−2 z−3
x y z−1

.
B. =
=
.
A. = =
1 1
1
2
3
−1
x−2 y+2 z−3
x−2 y−2 z−3
C.
=
=
.
D.
=
=
.
2
2
2
2
3
4
Câu 58. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. Cả ba câu trên đều sai.
B. F(x) = G(x) trên khoảng (a; b).

C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
 π
Câu 59. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


1 π3
2 π4
3 π6
A. 1.
B. e .
C.
e .
D.
e .
2
2
2
Câu 60. [1] Giá trị của biểu thức 9log3 12 bằng
A. 24.
B. 4.

C. 144.

D. 2.

Câu 61. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1

1
1
A. m ≥ .
B. m > .
C. m < .
D. m ≤ .
4
4
4
4
Câu 62. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
B. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
C. Số cạnh của khối chóp bằng số mặt của khối chóp.
D. Số đỉnh của khối chóp bằng số mặt của khối chóp.
Câu 63. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = −18.
B. y(−2) = 6.
C. y(−2) = 2.
D. y(−2) = 22.
Trang 5/11 Mã đề 1


Câu 64. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là

10a3 3
3
3

3
A. 20a .
B. 10a .
C. 40a .
D.
.
3
Câu 65. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 20 mặt đều.
C. Khối 12 mặt đều.
D. Khối tứ diện đều.
Câu 66. [1] Đạo hàm của làm số y = log x là
1
ln 10
1
1
.
B.
.
C. y0 =
.
D. y0 = .
A. y0 =
x ln 10
10 ln x
x
x
x−2 x−1
x
x+1

Câu 67. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3].
B. (−3; +∞).
C. (−∞; −3).
D. [−3; +∞).
Câu 68. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,

√ N, P bằng


20 3
14 3
.
B.
.
C. 6 3.
D. 8 3.
A.
3

3
Câu 69. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. −1.
B. 2.
C. 6.

D. 1.

Câu 70. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
A. V = 3S h.
B. V = S h.
C. V = S h.
2

1
D. V = S h.
3
x+2
Câu 71. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 3.
B. Vô số.
C. 2.
D. 1.

[ = 60◦ , S O
Câu 72. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD

vng góc
√ với mặt đáy và S O = a. Khoảng cách từ A đến (S
√ BC) bằng


a 57
a 57
2a 57
A.
.
B. a 57.
C.
.
D.
.
17
19
19
1
Câu 73. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 2 ≤ m ≤ 3.
C. 2 < m ≤ 3.
D. 0 ≤ m ≤ 1.
Câu 74. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lập phương.
B. Hình tam giác.
C. Hình lăng trụ.


D. Hình chóp.

Câu 75. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 2.
B. −2.
C. −4.

D. 4.

Câu 76. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −2.
B. m = −3.
C. m = −1.

D. m = 0.

Câu 77. Giá trị của lim (3x2 − 2x + 1)
x→1

A. 1.

B. +∞.

1
Câu 78. Hàm số y = x + có giá trị cực đại là
x
A. −2.
B. 2.

C. 3.


D. 2.

C. 1.

D. −1.
Trang 6/11 Mã đề 1


Câu 79. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
(1, 01)3
100.(1, 01)3
triệu.
B. m =
triệu.
A. m =
3
(1, 01)3 − 1
120.(1, 12)3
100.1, 03
C. m =
triệu.
D. m =
triệu.
3
(1, 12) − 1

3
Câu 80. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 10.
B. 11.
C. 12.
D. 4.
log(mx)
Câu 81. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m > 4.
B. m < 0.
C. m < 0 ∨ m = 4.
D. m ≤ 0.
Câu 82. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.
B. f (x) có giới hạn hữu hạn khi x → a.
x→a

x→a

x→a

x→a

C. lim+ f (x) = lim− f (x) = a.

D. lim f (x) = f (a).
x→a



Câu 83. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√ cho là



3
πa 6
πa3 3
πa3 3
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
6
2
3
Câu 84. Trong các mệnh đề dưới đây, mệnh đề nào!sai?
un
A. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn

B. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
C. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
!
un
D. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
12 + 22 + · · · + n2
n3
1
B. .
3

Câu 85. [3-1133d] Tính lim
A. +∞.

C.

2
.
3

D. 0.

Câu 86.
đề nào sau đây

Z [1233d-2] Mệnh Z
Z sai?
[ f (x) − g(x)]dx =

A.

f (x)dx −

g(x)dx, với mọi f (x), g(x) liên tục trên R.

Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
C.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
D.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
B.

Câu 87. [1] Tập
! xác định của hàm số y != log3 (2x + 1) là
!
1

1
1
B. −∞; − .
C.
; +∞ .
A. − ; +∞ .
2
2
2

!
1
D. −∞; .
2
Trang 7/11 Mã đề 1


1 − 2n
Câu 88. [1] Tính lim
bằng?
3n + 1
1
2
A. .
B. .
3
3

2
D. − .

3
x+3
Câu 89. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. Vô số.
B. 3.
C. 2.
D. 1.
C. 1.

Câu 90. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 6 mặt.
C. 4 mặt.

Câu 91. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
A. 3.
B. −3.
C. − .
3
Câu 92. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. (−∞; 6, 5).
C. [6, 5; +∞).

D. 5 mặt.
D.


1
.
3

D. (4; 6, 5].

Câu 93. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
5a
a
8a
2a
.
B.
.
C. .
D.
.
A.
9
9
9
9
x2
Câu 94. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1

C. M = e, m = 1.
D. M = e, m = .
A. M = e, m = 0.
B. M = , m = 0.
e
e
mx − 4
Câu 95. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 45.
B. 34.
C. 26.
D. 67.

Câu 96. Thể tích của khối lập phương có cạnh bằng a 2 √


2a3 2
A. V = 2a3 .
B. V = a3 2.
C.
.
D. 2a3 2.
3
Câu 97. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 3 nghiệm.
B. 1 nghiệm.
C. Vơ nghiệm.
D. 2 nghiệm.

Câu 98. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích khối
√ chóp S .ABCD là

3
3
3

a
a 3
2a 3
3
D.
.
B.
.
C. a3 3.
.
A.
3
3
6
x−3
Câu 99. [1] Tính lim
bằng?
x→3 x + 3
A. −∞.
B. 0.
C. 1.

D. +∞.
Câu 100. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (−1; −7).
B. (1; −3).
C. (0; −2).

D. (2; 2).

Câu 101. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {5; 3}.
B. {3; 5}.
C. {4; 3}.

D. {3; 4}.
un
Câu 102. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. −∞.
B. 1.
C. 0.
D. +∞.
Câu 103. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 3ac
A.
.
B.
.
C.

.
c+1
c+3
c+2

D.

3b + 2ac
.
c+2
Trang 8/11 Mã đề 1


Câu 104. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 3 mặt.
D. 4 mặt.
Câu 105. Khẳng định nào sau đây đúng?
A. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ đứng là hình lăng trụ đều.
D. Hình lăng trụ tứ giác đều là hình lập phương.
Câu 106. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 6 cạnh, 4 mặt. B. 4 đỉnh, 8 cạnh, 4 mặt. C. 6 đỉnh, 6 cạnh, 4 mặt. D. 3 đỉnh, 3 cạnh, 3 mặt.
Câu 107. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là 4.
B. Phần thực là 4, phần ảo là −1.
C. Phần thực là −1, phần ảo là −4.
D. Phần thực là 4, phần ảo là 1.

2n + 1
n+1
B. 3.

Câu 108. Tìm giới hạn lim
A. 1.

C. 0.

D. 2.

Câu 109. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (1; 2).
B. (−∞; +∞).
C. [1; 2].
Câu 110. [12210d] Xét các số thực dương x, y thỏa mãn log3
nhất Pmin của P√ = x + y.
2 11 − 3
.
A. Pmin =
3

B. Pmin

D. [−1; 2).
1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ
x + 2y




18 11 − 29
9 11 + 19
=
. C. Pmin =
.
21
9

D. Pmin


9 11 − 19
=
.
9

Câu 111. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn mặt.
B. Hai mặt.
C. Ba mặt.

D. Năm mặt.

Câu 112. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = (0; +∞).
B. D = R.

D. D = R \ {0}.


C. D = R \ {1}.

Câu 113. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m , 0.
B. m = 0.
C. m < 0.

D. m > 0.

Câu 114. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
A. 5.
B. .
C. 7.
D.
.
2
2
Câu 115. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của
P = xy + x + 2y + 17
A. −5.
B. −15.
C. −12.
D. −9.
Câu 116. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa
√ hai đường thẳng S B và AD bằng




a 2
a 2
A.
.
B. a 3.
C.
.
D. a 2.
3
2
Câu 117. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 10.
B. 12.
C. 27.

D. 3.

Câu 118. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
1
ab
ab
A. √
.
B. √
.
C. √
.

D. 2
.
a + b2
a2 + b2
2 a2 + b2
a2 + b2
Trang 9/11 Mã đề 1


Câu 119. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Tăng lên (n − 1) lần. B. Tăng lên n lần.
C. Giảm đi n lần.
D. Không thay đổi.
Câu 120. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 5.
B. 1.
C. 2.
D. 3.
!
!
!
x
1
2
2016
4
. Tính tổng T = f
+f
+ ··· + f

Câu 121. [3] Cho hàm số f (x) = x
4 +2
2017
2017
2017
2016
A. T = 1008.
B. T =
.
C. T = 2016.
D. T = 2017.
2017
Câu 122. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = 4 + .
B. T = e + .
C. T = e + 1.
D. T = e + 3.
e
e
Câu 123. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Bát diện đều.
B. Thập nhị diện đều. C. Tứ diện đều.
D. Nhị thập diện đều.
Câu 124. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 4}.
C. {5; 3}.


D. {3; 3}.

Câu 125. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là 4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là 3, phần ảo là −4.
D. Phần thực là −3, phần ảo là −4.
Câu 126. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 3
a3 6
a3 6
a 6
.
B.
.
C.
.
D.
.
A.
8
24
48

24
Câu 127. Khối đa diện đều loại {3; 5} có số cạnh
A. 12.
B. 8.
C. 30.
D. 20.
Câu 128. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 7 mặt.
C. 8 mặt.
log 2x

Câu 129. [3-1229d] Đạo hàm của hàm số y =
x2
1
1 − 4 ln 2x
1 − 2 ln 2x
A. y0 = 3
.
B. y0 = 3
.
C. y0 =
.
x ln 10
2x ln 10
2x3 ln 10
Câu 130. Khối đa diện đều loại {5; 3} có số đỉnh
A. 30.
B. 8.
C. 12.


D. 9 mặt.

D. y0 =

1 − 2 log 2x
.
x3

D. 20.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1

3. A

4.

5.

C

6.


7.

C

8.

9. A
11.

B
C
B

10. A
B
C

13.
15.

D

2.

C

1.

B


12.

B

14.

B

16. A

17.

D

18.

19.

D

20.

B
D

21. A

22.

C


23. A

24.

C

25. A

26.

27.

B

29.

28. A
C

31.

30.
D
D

36.

37.


D

38.

39.

D

40.

41. A

44.

B
D

46. A

47.

D

48.

B

51.

C

D

C

52.
54.

55. A

56.

57. A

58.

59.

60.

C

61.

B
D

50. A

53. A


B
D
B
D
C

62.

D

63. A
65.

D

42. A

45.
49.

D

34. A

35.

43.

C


32.

C

33.

B

D

64. A
66. A

B

67. A

68.
1

C


69.

C

70.

D


71.

C

72.

D

73.

C

74.

75.

76. A

B

77.
79.

D

82.

C
D

B

84.

C

86.

C
D

90.

B

91.

D

92.

93.

D

94. A

95.

D


88.

87. A
89.

C

80.

83.
85.

78. A

B

81.

B

C
D
D

96.

B

97.


D

98. A

99.

B

100.

C

101.

B

102.

C

104.

C

103.

C

105.


B

106. A

107.

B

108.

109.

B

110. A
C

111.
113. A
115.

C

117.

D

119.


C
B

B

114.

B

116.

C

118.

C

120.

C

124.

125. A
127.

112.

122.


121. A
123.

D

C

129. A

2

D
C

126.

D

128.

D

130.

D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×