Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (973)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (150.82 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x ) − √
2

A. 4.

B. 6.

C. −1.

Câu 2. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 1.

B. 3.

3

Z

6
3x + 1


1

. Tính

f (x)dx.
0

D. 2.
1
3|x−1|

C. 4.

= 3m − 2 có nghiệm duy

D. 2.

1
Câu 3. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = 4.
B. m = −3.
C. m = −3, m = 4.
D. −3 ≤ m ≤ 4.

Câu 4. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 1 nghiệm.
B. 3 nghiệm.

C. 2 nghiệm.
D. Vơ nghiệm.
Câu 5. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1.

3
1
3
A. .
B. .
C. 1.
D.
.
2
2
2
Câu 6. Dãy số nào có giới hạn bằng 0?!
!n
n
n3 − 3n
6
−2
2
A. un =
.
B. un =
.
C. un = n − 4n.
D. un =
.
n+1

5
3
Câu 7. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 0).
B. Hàm số đồng biến trên khoảng (1; 2).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng (0; 1).
Câu 8. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 8 mặt.
C. 6 mặt.

D. 10 mặt.

Câu 9. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều sai.
B. Chỉ có (I) đúng.

C. Cả hai đều đúng.

D. Chỉ có (II) đúng.

Câu 10. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3

a3
A.
.
B.
.
C. a3 .
D.
.
12
24
6
Câu 11. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. e.
B. −2 + 2 ln 2.
C. 1.
D. 4 − 2 ln 2.
x
9
Câu 12. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. .
B. 2.
C. −1.
D. 1.
2
Trang 1/10 Mã đề 1



Câu 13. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?

A. y = log √2 x.
B. y = loga x trong đó a = 3 − 2.
C. y = log 14 x.
D. y = log π4 x.

Câu 14. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
B. − .
C. −3.
D. 3.
A. .
3
3
Câu 15. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 2.
B. +∞.
C. 3.
D. 1.
Câu 16. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tam giác.
B. Một hình chóp tam giác và một hình chóp tứ giác.
C. Hai hình chóp tứ giác.
D. Một hình chóp tứ giác và một hình chóp ngũ giác.
 π π
3

Câu 17. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 7.
B. 1.
C. −1.
D. 3.
Câu 18. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −3.
B. 0.
C. −6.
D. 3.
Câu 19. Khối đa diện đều loại {3; 5} có số cạnh
A. 8.
B. 12.

C. 20.

Câu 20. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị nhỏ nhất trên K.
C. f (x) có giá trị lớn nhất trên K.

B. f (x) liên tục trên K.
D. f (x) xác định trên K.

Câu 21. Tứ diện đều thuộc loại
A. {5; 3}.
B. {3; 3}.

C. {3; 4}.


D. 30.

D. {4; 3}.

Câu 22. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 2.
B. 0, 3.
C. 0, 5.
D. 0, 4.
Câu 23. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 3
a3 5
a3 5
a3 5
.
B.
.
C.
.
D.
.
A.
12
4
12
6
Câu 24. Xét hai câu sau

Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (I) đúng.

B. Cả hai câu trên đúng. C. Cả hai câu trên sai.

Câu 25. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 1.
B. 2.
C. 0.

D. Chỉ có (II) đúng.
D. 3.

Câu 26. [1225d] Tìm tham số thực m để phương trình log2 (5 − 1) log4 (2.5 − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m ≥ 3.
C. m < 3.
D. m > 3.
x


x

Trang 2/10 Mã đề 1


Câu 27. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
D.
A. 3.
B. 2e + 1.
C. .
e
Câu 28. Bát diện đều thuộc loại
A. {4; 3}.
B. {3; 4}.
C. {5; 3}.
D.
1 − 2n
Câu 29. [1] Tính lim
bằng?
3n + 1
1
2
A. .
B. 1.
C. .
D.
3
3
Câu 30. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là

A. 2.
B. 3.
C. 1.
D.
un
Câu 31. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. +∞.
B. 1.
C. −∞.
D.

2e.
{3; 3}.

2
− .
3
5.
0.

Câu 32. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là


a3 3
2a3 3
a3 3
3

.
B.
.
C. a 3.
D.
.
A.
3
6
3
Câu 33.! Dãy số nào sau đây có giới! hạn là 0?
!n
!n
n
n
4
1
5
5
.
B. − .
C.
.
D.
.
A.
e
3
3
3

! x3 −3mx2 +m
1
Câu 34. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m = 0.
B. m ∈ (0; +∞).
C. m ∈ R.
D. m , 0.
Câu 35. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {2}.
B. {3}.
C. {5; 2}.
D. {5}.
Câu 36. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (2; +∞).
B. (−∞; 1).
C. (0; 2).

D. R.

Câu 37. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 20, 128 triệu đồng. B. 3, 5 triệu đồng.
C. 50, 7 triệu đồng.
D. 70, 128 triệu đồng.
Câu 38. Khẳng định nào sau đây đúng?
A. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.

B. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ đứng là hình lăng trụ đều.
D. Hình lăng trụ tứ giác đều là hình lập phương.

Câu 39. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √


3
a 6
a 6
a3 6
a3 2
.
B.
.
C.
.
D.
.
A.
6
36
18
6
Câu 40. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4

đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x y z−1
x−2 y+2 z−3
A. = =
.
B.
=
=
.
1 1
1
2
2
2
Trang 3/10 Mã đề 1


C.


x y−2 z−3
=
=
.
2
3
−1

D.

Câu 41. [1-c] Giá trị của biểu thức
A. 2.

log7 16
log7 15 − log7

B. −4.

15
30

x−2 y−2 z−3
=
=
.
2
3
4

bằng

C. 4.

D. −2.

Câu 42. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −2.
B. m = −3.
C. m = −1.

D. m = 0.

Câu 43. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a
a 3
A. .
B. a.
C. .
D.
.
3
2
2
Câu 44. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 4.

C. 3.


D. 2.

Câu 45. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −5.
B. −12.
C. −9.
D. −15.
Câu 46. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 16 tháng.
B. 17 tháng.
C. 18 tháng.
D. 15 tháng.

x2 + 3x + 5
Câu 47. Tính giới hạn lim
x→−∞
4x − 1
1
1
B. 0.
C. − .
D. 1.
A. .
4
4

Câu 48.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
A.
Z
B.

[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.

Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
D.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
C.

Câu 49. [4-1244d] Trong tất cả các số phức z = a + bi,
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
23
5
A. − .

B. −
.
C.
16
100
log 2x
Câu 50. [1229d] Đạo hàm của hàm số y =

x2
1 − 2 log 2x
1
A. y0 =
.
B. y0 = 3
.
C.
3
x
2x ln 10

a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
13
.
100

y0 =

D.

1 − 2 ln 2x

.
x3 ln 10
!

1
1
1
+
+ ··· +
1 1+2
1 + 2 + ··· + n
3
B. .
C. 2.
2

9
.
25

D. y0 =

1 − 4 ln 2x
.
2x3 ln 10

Câu 51. [3-1131d] Tính lim
A. +∞.

D.


5
.
2
Trang 4/10 Mã đề 1





x=t




Câu 52. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
A. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
4
4

9
9
2
2
2
2
2
2
C. (x − 3) + (y + 1) + (z + 3) = .
D. (x + 3) + (y + 1) + (z − 3) = .
4
4
3
2
2
Câu 53. Tìm m để hàm số y = x − 3mx + 3m có 2 điểm cực trị.
A. m , 0.
B. m = 0.
C. m < 0.
D. m > 0.
Câu 54. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; −1) và (0; +∞). B. (0; 1).
C. (−∞; 0) và (1; +∞). D. (−1; 0).
log(mx)
Câu 55. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0.
B. m ≤ 0.
C. m < 0 ∨ m = 4.

D. m < 0 ∨ m > 4.
Câu 56. Mệnh đề nào sau đây sai?
A. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
B. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).
C. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
!0
Z
D.
f (x)dx = f (x).

f (x)dx = F(x) + C.

Câu 57. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. .
B. 9.
C. 6.
D. .
2
2
Câu 58. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp
√ đã cho
√ là 1728. Khi đó, các kích thước của hình hộp là
A. 2 3, 4 3, 38.
B. 6, 12, 24.
C. 2, 4, 8.
D. 8, 16, 32.



Câu 59. Tìm giá trị lớn nhất của hàm

√ số y = x + 3 + 6√− x
A. 3.
B. 2 + 3.
C. 3 2.
D. 2 3.
2n + 1
Câu 60. Tính giới hạn lim
3n + 2
2
1
3
B. .
C. 0.
D. .
A. .
2
3
2

Câu 61. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
A. 25.
B. 5.
C. .
D. 5.

5
1
Câu 62. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = ey − 1.
B. xy0 = ey + 1.
C. xy0 = −ey + 1.
D. xy0 = −ey − 1.
x2
Câu 63. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = .
B. M = e, m = 1.
C. M = , m = 0.
D. M = e, m = 0.
e
e
Câu 64. Khối lập phương thuộc loại
A. {3; 4}.
B. {4; 3}.
C. {5; 3}.
D. {3; 3}.
Trang 5/10 Mã đề 1



2

2

Câu 65. [3-c] Giá trị nhỏ nhất √
và giá trị lớn nhất của hàm √
số f (x) = 2sin x + 2cos x lần lượt
√ là
A. 2 và 3.
B. 2 và 3.
C. 2 2 và 3.
D. 2 và 2 2.

2
Câu 66.

√ Xác định phần ảo của số phức z = ( 2 + 3i)
B. −7.
C. −6 2.
D. 7.
A. 6 2.
1

Câu 67. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (1; +∞).
B. D = (−∞; 1).
C. D = R.

D. D = R \ {1}.


Câu 68.√Thể tích của tứ diện đều √
cạnh bằng a
a3 2
a3 2
A.
.
B.
.
4
6


a3 2
D.
.
12


a3 2
C.
.
2

Câu 69.
√ của |z|
√ [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất
A. 3.
B. 1.
C. 2.
D. 5.

Câu 70. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 5.
B. −6.
C. −5.

D. 6.

Câu 71. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối tứ diện đều.

D. Khối 12 mặt đều.

2

C. Khối bát diện đều.

Câu 72. Cho
√ số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
A. |z| = 17.
B. |z| = 17.
C. |z| = 10.
D. |z| = 10.
Câu 73. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 5 mặt. C. 6 đỉnh, 9 cạnh, 6 mặt. D. 5 đỉnh, 9 cạnh, 6 mặt.
Câu 74. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) trên khoảng (a; b).
B. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.

D. Cả ba câu trên đều sai.
Câu 75. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 10 .(3)40
C 20 .(3)30
C 40 .(3)10
C 20 .(3)20
B. 50 50 .
C. 50 50 .
D. 50 50 .
A. 50 50 .
4
4
4
4
Câu 76. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng




14 3
20 3
A. 8 3.
B.
.
C.

.
D. 6 3.
3
3
Câu 77. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng số mặt của khối chóp.
B. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
C. Số đỉnh của khối chóp bằng số mặt của khối chóp.
D. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
Câu 78. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m ≥ 0.
B. m > 1.
C. m > −1.

D. m > 0.
Trang 6/10 Mã đề 1


1
Câu 79. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 2 < m ≤ 3.
C. 0 < m ≤ 1.
D. 2 ≤ m ≤ 3.
Câu 80. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −5.
B. x = −8.
C. x = −2.
D. x = 0.

1
2mx + 1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
Câu 81. Giá trị lớn nhất của hàm số y =
m−x
3
A. 0.
B. −5.
C. −2.
D. 1.
Câu 82. Khối đa diện đều loại {3; 5} có số mặt
A. 8.
B. 12.

C. 30.

D. 20.

Câu 83. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C) và (A0C 0 D) bằng




2a 3
a 3
a 3
B.
.
C.

.
D.
.
A. a 3.
2
3
2
Câu 84. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 85. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 4.
B. 12.
C. 10.
D. 11.
Câu 86. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
B.
D. a 3.
.
C. 2a 6.
A. a 6.

2
Câu 87. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 3 mặt.
C. 6 mặt.
D. 9 mặt.
Câu 88. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 10 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 89. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tam giác.
B. Một khối chóp tam giác, một khối chóp ngữ giác.
C. Một khối chóp tam giác, một khối chóp tứ giác.
D. Hai khối chóp tứ giác.
1
Câu 90. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; 3).
B. (−∞; 1) và (3; +∞). C. (1; +∞).
D. (−∞; 3).
2n + 1
Câu 91. Tìm giới hạn lim
n+1
A. 0.
B. 1.
C. 2.
D. 3.
Câu 92. Cho hàm số y = x3 − 2x2 + x + 1.

! Mệnh đề nào dưới đây đúng?
1
A. Hàm số đồng biến trên khoảng ; 1 .
B. Hàm số nghịch biến trên khoảng (1; +∞).
3
!
!
1
1
C. Hàm số nghịch biến trên khoảng −∞; .
D. Hàm số nghịch biến trên khoảng ; 1 .
3
3


Câu 93. [12215d] Tìm m để phương trình 4 x+
3
A. m ≥ 0.
B. 0 ≤ m ≤ .
4

1−x2



− 3m + 4 = 0 có nghiệm
3
9
C. 0 < m ≤ .
D. 0 ≤ m ≤ .

4
4

− 4.2 x+

1−x2

Trang 7/10 Mã đề 1


Câu 94. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
.
B. .
C. 2.
A.
2
2
5
Câu 95. Tính lim
n+3
A. 1.
B. 2.
C. 0.
Câu 96. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình tam giác.
B. Hình lập phương.
C. Hình chóp.


D. 1.

D. 3.
D. Hình lăng trụ.

Câu 97. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD), S D = a 5. Thể tích khối
√ chóp S .ABCD là


3

a 15
a3 6
a3 5
3
A. a 6.
B.
.
C.
.
D.
.
3
3
3
Câu 98. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3

B. 1.
C. 3.
D. .
A. .
2
2
Câu 99. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
Câu 100. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1134 m.
B. 2400 m.
C. 6510 m.
D. 1202 m.
q
2
Câu 101. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x + log23 x + 1 + 4m −
√ i
h
1 = 0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 4].
C. m ∈ [0; 2].
D. m ∈ [0; 1].
1 + 2 + ··· + n
Câu 102. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?

n2 + 1
1
A. lim un = 1.
B. lim un = .
2
C. Dãy số un khơng có giới hạn khi n → +∞.
D. lim un = 0.
Câu 103. Biểu thức nào sau đây khơng có nghĩa
A. (−1)−1 .
B. 0−1 .
x2 − 9
Câu 104. Tính lim
x→3 x − 3
A. 3.
B. 6.


4n2 + 1 − n + 2
Câu 105. Tính lim
bằng
2n − 3
A. +∞.
B. 2.

C.


−1.

−3


C. +∞.


D. (− 2)0 .

D. −3.

3
.
D. 1.
2
Câu 106. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 4 lần.
B. Tăng gấp 6 lần.
C. Tăng gấp đôi.
D. Tăng gấp 8 lần.
C.

Câu 107. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 18 lần.
B. Tăng gấp 9 lần.
C. Tăng gấp 27 lần.
D. Tăng gấp 3 lần.
Trang 8/10 Mã đề 1


4x + 1

Câu 108. [1] Tính lim
bằng?
x→−∞ x + 1
A. 4.
B. 2.

C. −4.
log 2x
Câu 109. [3-1229d] Đạo hàm của hàm số y =

x2
1 − 2 ln 2x
1
1 − 4 ln 2x
A. y0 = 3
.
B. y0 = 3
.
C. y0 =
.
x ln 10
2x ln 10
2x3 ln 10
Câu 110. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều. C. Khối lập phương.

D. −1.

D. y0 =


1 − 2 log 2x
.
x3

D. Khối tứ diện đều.

Câu 111. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung
điểm cạnh AB, biết S H ⊥ (ABCD).√Thể tích khối chóp S .ABCD
√ là
3
3
3
a
4a 3
2a 3
a3
A.
.
B.
.
C.
.
D.
.
6
3
3
3
n−1

Câu 112. Tính lim 2
n +2
A. 1.
B. 0.
C. 3.
D. 2.
2

Câu 113. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 5.
B. 4.
C. 2.

D. 3.

Câu 114. Khối đa diện đều loại {3; 4} có số cạnh
A. 10.
B. 8.

D. 12.

C. 6.

Câu 115. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
ab
1
.

C. √
.
D. √
.
A. 2
.
B. √
2
2
2
2
2
a +b
a +b
2 a +b
a2 + b2
Câu 116. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 8.
B. 3.
C. 4.
D. 6.
1
ln x p 2
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
Câu 117. Gọi F(x) là một nguyên hàm của hàm y =
x
3
1
8

1
8
A. .
B. .
C. .
D. .
9
9
3
3
x2 − 5x + 6
Câu 118. Tính giới hạn lim
x→2
x−2
A. 0.
B. 1.
C. 5.
D. −1.
Câu 119. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 91cm3 .
B. 48cm3 .
C. 84cm3 .
D. 64cm3 .
Câu 120. Dãy số nào sau đây có giới hạn khác 0?
n+1
sin n
A.
.
B.

.
n
n

1
D. √ .
n
[ = 60◦ , S A ⊥ (ABCD).
Câu 121. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng khoảng cách từ A đến cạnh
√chóp S .ABCD là

√ S C là a. Thể tích khối
3
3

a 3
a 2
a3 2
3
A. a 3.
B.
.
C.
.
D.
.
6
4
12

Câu 122.
định nào sau đây là sai?
!
Z Các khẳng
Z
Z
C.

1
.
n

0

A.
Z
C.

f (x)dx = f (x).
Z
k f (x)dx = k
f (x)dx, k là hằng số.

f (x)dx = F(x) +C ⇒

B.
Z
D.

f (x)dx = F(x) + C ⇒


f (u)dx = F(u) +C.

Z

f (t)dt = F(t) + C.
Trang 9/10 Mã đề 1


Câu 123. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
B. T = e + 3.
C. T = e + 1.
D. T = 4 + .
A. T = e + .
e
e
Câu 124.
Cho hàm sốZf (x), g(x)Zliên tục trên R. Trong các
Z
Z mệnh đề sau, mệnhZđề nào sai? Z
A.
Z
C.

f (x)g(x)dx =
f (x)dx g(x)dx.
Z

k f (x)dx = f
f (x)dx, k ∈ R, k , 0.

( f (x) − g(x))dx =

B.
Z
D.

( f (x) + g(x))dx =

f (x)dx −
Z

f (x)dx +

g(x)dx.
Z
g(x)dx.

Câu 125. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 4.
B. ln 12.
C. ln 14.
D. ln 10.
Câu 126. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 3}.
B. {5; 3}.
C. {3; 4}.


D. {4; 3}.

Câu 127. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. n3 lần.
C. 2n2 lần.
D. 2n3 lần.
x+3
Câu 128. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. Vô số.
B. 3.
C. 2.
D. 1.
Câu 129. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
với
đáy

S
C
=
a
3. √
Thể tích khối chóp S .ABC√là



3
3
a 3
a 3
a3 6
2a3 6
A.
.
B.
.
C.
.
D.
.
4
2
12
9
!
x+1
Câu 130. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
4035
2016
2017
.
C.
.

D.
.
A. 2017.
B.
2018
2018
2017
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2. A

3.

C

4.

5.

C

6.


7.

D

9.

D

C

10. A
12.

13. A

14. A

15. A

16. A

D

18. A

B

19.
21.


D

8.

11. A

17.

C

D
B

20.

B

22.

B

23.

C

24.

B


25.

C

26.

B

28.

B

27. A
29.

D

30. A

31.

D

32. A

33.

34. A

C

D

35.
37. A

38.

39.

C
B

42. A

43.

B

44.

45.

B

46. A

49.
51.

C


48.

B
C
C

57. A
59.

C

61. A

B

50.

C

52.

C
D

56.

B

58.


B

60.

B

62. A

63.
65.

B

54.

53. A
55.

B

40. A

41.

47.

C

36.


D

64.

B

66. A

C

68.

67. A
1

D


69.

C
D

71.
73.

B

C


72.

C

74.

77.

D

78.

C

80.

B

C
B

82.

81. A
83.

84.

C


85.

B

86. A

87.

B

88.

89.

C

90.

91.

C

92.

93.

B

76.


75. A
79.

70.

D
B
D
B
D

94.

B

95.

C

96. A

97.

C

98. A

C


99. A

100.

101. A

102.

B

104.

B

103.

B

105.

D

106.

C

107.

110.


B
B

111.

B

112.

113.

B

114.

117.

D
D

127.
129.

B
D

120. A

C


122.

B

125.

D

118.

119.
123.

116.

B

121.

D

108. A

109. A

115.

C

B


124. A
C

B
C

2

126.

B

128.

B

130.

B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×