TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
[ = 60◦ , S O
Câu 1. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√
√ với mặt đáy và S O = a. Khoảng cách từ O đến (S√BC) bằng
√
a 57
a 57
2a 57
.
B. a 57.
.
D.
.
A.
C.
17
19
19
Câu 2. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (I) sai.
B. Câu (II) sai.
C. Khơng có câu nào D. Câu (III) sai.
sai.
Câu 3. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦√. Thể tích khối chóp S .ABCD
√
√ là
3
3
3
3
4a 3
8a 3
a 3
8a 3
A.
.
B.
.
C.
.
D.
.
9
3
9
9
Câu 4. [1] Đạo hàm của làm số y = log x là
1
1
ln 10
1
A.
.
B. y0 =
.
C. y0 =
.
D. y0 = .
10 ln x
x ln 10
x
x
y
z+1
x−1
= =
và
Câu 5. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 10x − 7y + 13z + 3 = 0.
B. 2x + y − z = 0.
C. 2x − y + 2z − 1 = 0.
D. −x + 6y + 4z + 5 = 0.
Z 2
ln(x + 1)
Câu 6. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 1.
B. 3.
C. −3.
D. 0.
Câu 7. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 12.
B. ln 10.
C. ln 14.
D. ln 4.
Câu 8. Khối đa diện đều loại {4; 3} có số mặt
A. 12.
B. 10.
C. 6.
D. 8.
Câu 9. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây thứ
5 đến giây thứ 15 là bao nhiêu?
A. 2400 m.
B. 1134 m.
C. 1202 m.
D. 6510 m.
Câu 10. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Trang 1/10 Mã đề 1
Các mệnh đề đúng là
A. Cả ba mệnh đề.
B. (I) và (III).
C. (I) và (II).
D. (II) và (III).
Câu 11. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 21.
B. 23.
C. 22.
D. 24.
1
Câu 12. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 0 < m ≤ 1.
C. 2 < m ≤ 3.
D. 0 ≤ m ≤ 1.
x=t
Câu 13. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
y = −1 và hai mặt phẳng (P), (Q)
z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
A. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x + 3) + (y + 1) + (z − 3) = .
D. (x − 3) + (y − 1) + (z − 3) = .
4
4
Câu 14. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.423.000.
B. 102.424.000.
C. 102.016.000.
D. 102.016.000.
Câu 15. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 13.
B. log2 2020.
C. 2020.
D. log2 13.
Câu 16. Hàm số y = x +
A. 1.
1
có giá trị cực đại là
x
B. −2.
C. −1.
Câu 17. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm mặt.
B. Bốn mặt.
C. Ba mặt.
D. 2.
D. Hai mặt.
2mx + 1
1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. −5.
B. −2.
C. 0.
D. 1.
! x3 −3mx2 +m
1
Câu 19. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ R.
B. m = 0.
C. m ∈ (0; +∞).
D. m , 0.
Câu 18. Giá trị lớn nhất của hàm số y =
Câu 20. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −8.
B. x = −5.
C. x = −2.
D. x = 0.
√
Câu 21. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là √
√
√
a3
a3 3
a3 3
3
A.
.
B.
.
C. a 3.
D.
.
4
3
12
√
Câu 22. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. −3.
B. 3.
C. − .
D. .
3
3
Trang 2/10 Mã đề 1
Câu 23. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lập phương.
B. Khối lăng trụ tam giác.
C. Khối bát diện đều.
D. Khối tứ diện.
un
Câu 24. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 1.
B. 0.
C. +∞.
D. −∞.
Câu 25. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 0).
B. Hàm số đồng biến trên khoảng (1; 2).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng (0; 1).
9t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
Câu 26. [4] Xét hàm số f (t) = t
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 2.
B. 1.
C. 0.
D. Vơ số.
x−3
bằng?
Câu 27. [1] Tính lim
x→3 x + 3
A. −∞.
B. 0.
C. +∞.
D. 1.
Câu 28. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Bốn mặt.
B. Hai mặt.
C. Một mặt.
D. Ba mặt.
Câu 29. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A.
.
B. −2.
C. −7.
D. −4.
27
Câu 30. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là −4.
B. Phần thực là 3, phần ảo là −4.
C. Phần thực là 3, phần ảo là 4.
D. Phần thực là −3, phần ảo là 4.
Câu 31. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.
C. Khối bát diện đều.
D. Khối lập phương.
1
Câu 32. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 < m < −1.
B. (−∞; −2) ∪ (−1; +∞). C. −2 ≤ m ≤ −1.
D. (−∞; −2] ∪ [−1; +∞).
Câu 33. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 6 mặt.
C. 10 mặt.
D. 8 mặt.
Câu 34. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 3 mặt.
D. 4 mặt.
Câu 35. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (−1; −7).
B. (0; −2).
C. (1; −3).
D. (2; 2).
Câu 36. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có vơ số.
B. Có một.
C. Có hai.
D. Khơng có.
Câu 37. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 2.
C. 1.
D. 3.
d = 300 .
Câu 38. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
0
Độ dài cạnh bên CC = 3a. Thể tích V √của khối lăng trụ đã cho.
√
√
a3 3
3a3 3
3
3
A. V = 3a 3.
B. V =
.
C. V = 6a .
D. V =
.
2
2
Trang 3/10 Mã đề 1
Câu 39. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.
B. 0, 5.
C. 0, 4.
D. 0, 2.
Câu 40. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 13 năm.
B. 12 năm.
C. 10 năm.
D. 11 năm.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 41. [3-12217d] Cho hàm số y = ln
x
+
1
A. xy0 = ey − 1.
B. xy0 = ey + 1.
C. xy0 = −ey − 1.
D. xy0 = −ey + 1.
Z 1
Câu 42. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0
1
1
.
C. .
D. 1.
4
2
Câu 43. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 5
a3 5
a3 3
.
B.
.
C.
.
D.
.
A.
12
12
4
6
A. 0.
B.
Câu 44. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất của hàm số. Khi đó tổng
√
√
√M + m
C. 8 2.
D. 7 3.
A. 16.
B. 8 3.
1
Câu 45. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 1.
B. 3.
C. 2.
D. 4.
5
Câu 46. Tính lim
n+3
A. 1.
B. 2.
C. 3.
D. 0.
Câu 47. Tính lim
x→5
2
A. − .
5
x2 − 12x + 35
25 − 5x
2
B. .
5
C. +∞.
D. −∞.
Câu 48. Trong khơng gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; −3).
B. A0 (−3; 3; 3).
C. A0 (−3; −3; 3).
D. A0 (−3; 3; 1).
2x + 1
x→+∞ x + 1
Câu 49. Tính giới hạn lim
A. 2.
Câu 50. Tính lim
A. +∞.
x→3
x2 − 9
x−3
1
.
2
B. −1.
C.
B. 3.
C. −3.
D. 1.
D. 6.
Câu 51. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√
√ chóp S .ABCD là
√
3
3
a 6
a 3
a3 2
a3 3
A.
.
B.
.
C.
.
D.
.
48
48
16
24
Trang 4/10 Mã đề 1
Câu 52. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số mặt của khối chóp.
B. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
C. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
D. Số cạnh của khối chóp bằng số mặt của khối chóp.
Câu 53. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
1
B. − .
C. −2.
A. .
2
2
Câu 54. Khối đa diện đều loại {3; 3} có số mặt
A. 3.
B. 5.
C. 2.
D. 2.
D. 4.
Câu 55. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (3; 4; −4).
B. ~u = (2; 1; 6).
C. ~u = (1; 0; 2).
D. ~u = (2; 2; −1).
Câu 56. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều.
C. Khối lập phương.
D. Khối 12 mặt đều.
Câu 57. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 7.
B. 0.
C. 9.
D. 5.
Câu 58. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình tam giác.
B. Hình lập phương.
C. Hình lăng trụ.
D. Hình chóp.
Câu 59. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 24 m.
B. 12 m.
C. 8 m.
D. 16 m.
!2x−1
!2−x
3
3
≤
là
Câu 60. Tập các số x thỏa mãn
5
5
A. (+∞; −∞).
B. [1; +∞).
C. [3; +∞).
D. (−∞; 1].
Câu 61. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√
√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng
√
√
a 2
a 2
.
B. a 2.
C.
.
D. 2a 2.
A.
4
2
Câu 62. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. [6, 5; +∞).
C. (−∞; 6, 5).
D. (4; 6, 5].
Câu 63. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m < 3.
C. m ≥ 3.
D. m > 3.
Câu 64. Khối đa diện đều loại {4; 3} có số cạnh
A. 12.
B. 10.
C. 30.
D. 20.
Câu 65. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới đây?
"
!
5
5
A.
;3 .
B. (1; 2).
C. [3; 4).
D. 2; .
2
2
√
ab.
Câu 66. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≥ 3.
B. −3 ≤ m ≤ 3.
C. −2 ≤ m ≤ 2.
D. m ≤ 3.
Trang 5/10 Mã đề 1
Câu 67. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P.
B. d ⊥ P.
C. d song song với (P).
D. d nằm trên P hoặc d ⊥ P.
Câu 68. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. (−∞; −3].
B. [−3; 1].
C. [1; +∞).
D. [−1; 3].
Câu 69. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −e2 .
B. 2e2 .
C. 2e4 .
D. −2e2 .
Câu 70. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên sai.
B. Chỉ có (I) đúng.
C. Cả hai câu trên đúng. D. Chỉ có (II) đúng.
Câu 71. Trong khơng gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
B. 1.
C. 3.
D. .
A. .
2
2
Câu 72. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Giảm đi n lần.
B. Tăng lên (n − 1) lần. C. Không thay đổi.
D. Tăng lên n lần.
Câu 73. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4
√
√
√
√
a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
24
12
36
6
Câu 74. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 9.
B. 0.
C. Không tồn tại.
D. 13.
Câu 75. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = a.
B. lim f (x) = f (a).
x→a
x→a
C. lim+ f (x) = lim− f (x) = +∞.
x→a
x→a
x→a
D. f (x) có giới hạn hữu hạn khi x → a.
Câu 76. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|
√
√
√
√
12 17
A. 34.
B. 5.
C. 68.
D.
.
17
Câu 77. Khối đa diện đều loại {3; 5} có số mặt
A. 12.
B. 8.
C. 30.
D. 20.
Câu 78. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là
√
10a3 3
3
3
3
A. 10a .
B. 40a .
C. 20a .
D.
.
3
Trang 6/10 Mã đề 1
Câu 79. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 3 mặt.
C. 5 mặt.
D. 4 mặt.
Câu 80. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −3.
B. 3.
C. −6.
D. 0.
Câu 81.
bằng 1 là:
√
√ Thể tích của khối lăng trụ tam giác đều có cạnh √
3
3
3
3
.
B. .
C.
.
D.
.
A.
4
4
2
12
Câu 82. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (0; 1).
B. (−∞; 0) và (1; +∞). C. (−∞; −1) và (0; +∞). D. (−1; 0).
Câu 83. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −6.
B. 6.
C. 5.
2
Câu 84. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị lớn nhất trên K.
C. f (x) xác định trên K.
D. −5.
B. f (x) liên tục trên K.
D. f (x) có giá trị nhỏ nhất trên K.
Câu 85. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
.
B. .
C. 7.
D. 5.
A.
2
2
Câu 86. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m < 0.
B. m , 0.
C. m > 0.
D. m = 0.
Câu 87.
√ [4-1246d] Trong tất cả√các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất của |z|
B. 3.
C. 1.
D. 2.
A. 5.
Câu 88. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
C.
.
D.
.
A. a3 .
B.
12
24
6
Câu 89. Phát biểu nào sau đây là sai?
1
A. lim un = c (Với un = c là hằng số).
B. lim √ = 0.
n
1
D. lim qn = 1 với |q| > 1.
C. lim k = 0 với k > 1.
n
Câu 90. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
6
18
9
15
Câu 91. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 4}.
B. {3; 5}.
C. {5; 3}.
D. {4; 3}.
Câu 92. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Một tứ diện đều và bốn hình chóp tam giác đều.
B. Năm hình chóp tam giác đều, khơng có tứ diện đều.
C. Bốn tứ diện đều và một hình chóp tam giác đều.
D. Năm tứ diện đều.
Câu 93.√Thể tích của tứ diện đều √
cạnh bằng a
3
3
a 2
a 2
A.
.
B.
.
4
12
√
a3 2
C.
.
2
√
a3 2
D.
.
6
Trang 7/10 Mã đề 1
Câu 94. Hàm số nào sau đây khơng có cực trị
x−2
A. y =
.
B. y = x4 − 2x + 1.
2x + 1
1
C. y = x + .
x
Câu 95. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. −1.
B. 6.
C. 1.
D. y = x3 − 3x.
D. 2.
log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0.
D. m ≤ 0.
Câu 96. [3-1226d] Tìm tham số thực m để phương trình
A. m < 0 ∨ m = 4.
B. m < 0 ∨ m > 4.
Câu 97. Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
A. Nhị thập diện đều. B. Tứ diện đều.
C. Thập nhị diện đều.
D. Bát diện đều.
Câu 98. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = x + ln x.
B. y0 = ln x − 1.
C. y0 = 1 − ln x.
D. y0 = 1 + ln x.
Câu 99. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = (0; +∞).
B. D = R.
C. D = R \ {1}.
D. D = R \ {0}.
Câu 100. Cho hàm số y = x3 − 2x2 + x +!1. Mệnh đề nào dưới đây đúng?
1
A. Hàm số đồng biến trên khoảng ; 1 .
B. Hàm số nghịch biến trên khoảng (1; +∞).
3
!
!
1
1
D. Hàm số nghịch biến trên khoảng −∞; .
C. Hàm số nghịch biến trên khoảng ; 1 .
3
3
!
1
1
1
Câu 101. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
A. .
B. +∞.
C. 2.
D. .
2
2
Câu 102. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 1587 m.
C. 27 m.
D. 25 m.
Câu 103. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 3.
B. V = 6.
C. V = 5.
D. V = 4.
x+2
Câu 104. Tính lim
bằng?
x→2
x
A. 0.
B. 3.
C. 1.
D. 2.
Câu 105. Dãy số nào sau đây có giới hạn khác 0?
1
n+1
A. .
B.
.
n
n
C.
sin n
.
n
1
D. √ .
n
Câu 106. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn
nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
(1, 01)3
100.1, 03
A. m =
triệu.
triệu.
B.
m
=
(1, 01)3 − 1
3
100.(1, 01)3
120.(1, 12)3
C. m =
triệu.
D. m =
triệu.
3
(1, 12)3 − 1
Trang 8/10 Mã đề 1
Câu 107. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 20 mặt đều.
C. Khối 12 mặt đều.
D. Khối tứ diện đều.
Câu 108.! Dãy số nào sau đây có !giới hạn là 0?
n
n
5
5
B.
.
A. − .
3
3
!n
1
C.
.
3
!n
4
D.
.
e
Câu 109. Tính diện tích hình phẳng
giới hạn bởi các đường y = xe x , y = 0, x = 1.
√
1
3
A. .
B.
.
C. 1.
D.
2
2
√
Câu 110.√ Xác định phần ảo của số phức z = ( 2 + 3i)2
A. −6 2.
B. −7.
C. 7.
D.
!x
1
Câu 111. [2] Tổng các nghiệm của phương trình 31−x = 2 +
là
9
A. 1 − log2 3.
B. − log2 3.
C. log2 3.
D.
3
.
2
√
6 2.
− log3 2.
3
Câu 112. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e.
B. e5 .
C. e3 .
D. e2 .
Câu 113. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 16π.
B. V = 4π.
C. 8π.
D. 32π.
√
Câu 114. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. Vơ nghiệm.
B. 3 nghiệm.
C. 2 nghiệm.
D. 1 nghiệm.
Câu 115. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = S h.
C. V = 3S h.
D. V = S h.
2
3
x
x+1
x−2 x−1
+
+
+
và y = |x + 1| − x − m (m là tham
Câu 116. [4-1212d] Cho hai hàm số y =
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [−3; +∞).
B. (−∞; −3].
C. (−∞; −3).
D. (−3; +∞).
Câu 117. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
B. Cả ba đáp án trên.
√
C. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
D. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
Câu 118. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng
√
a
a
a 3
A. .
B. .
C. a.
D.
.
2
3
2
Câu 119. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là
√
√
√
a3 3
2a3 3
a3 3
3
A. a 3.
B.
.
C.
.
D.
.
3
3
6
Câu 120. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = 10.
B. f 0 (0) = 1.
C. f 0 (0) = ln 10.
D. f 0 (0) =
1
.
ln 10
Trang 9/10 Mã đề 1
Câu 121. Dãy!số nào có giới hạn bằng 0?
n
−2
n3 − 3n
A. un =
.
B. un =
.
3
n+1
!n
6
C. un =
.
5
D. un = n2 − 4n.
Câu 122. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3.
Tính f (2) + f (4)?
A. 4.
B. 11.
C. 12.
D. 10.
Câu 123. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 4}.
B. {3; 3}.
C. {5; 3}.
D. {4; 3}.
Câu 124. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 70, 128 triệu đồng. B. 20, 128 triệu đồng. C. 50, 7 triệu đồng.
D. 3, 5 triệu đồng.
x2 − 5x + 6
Câu 125. Tính giới hạn lim
x→2
x−2
A. 5.
B. 0.
C. 1.
D. −1.
Câu 126. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
√
1
A. 5.
B. 5.
C. .
5
3
2
Câu 127. Tập xác định của hàm số f (x) = −x + 3x − 2 là
A. [1; 2].
B. (−∞; +∞).
C. [−1; 2).
√
D. 25.
D. (1; 2).
[ = 60◦ , S O
Câu 128. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ Khoảng cách từ A đến (S BC) bằng
√ với mặt đáy và S O = a.
√
√
a 57
2a 57
a 57
.
B.
.
C. a 57.
.
A.
D.
19
19
17
Câu 129. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
a3 3
a3 6
a3 6
a3 6
.
B.
.
C.
.
D.
.
A.
24
24
48
8
Câu 130.
Các khẳng định nàoZsau đây là sai?
!
Z
Z
0
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C. B.
f (x)dx = f (x).
Z
Z
Z
Z
C.
k f (x)dx = k
f (x)dx, k là hằng số.
D.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.
A.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
D
2.
3.
D
4.
5. A
C
7.
9.
D
11.
13.
C
B
15.
D
17.
B
6.
C
8.
C
10.
C
12.
C
14.
B
16.
B
18.
C
19.
B
20. A
21.
B
22.
23.
D
24.
25.
D
26. A
27.
B
28. A
29.
B
30.
31.
C
C
C
D
B
D
32.
C
33.
B
34.
C
35.
B
36.
C
37.
38.
C
39. A
40.
41. A
42.
43.
B
B
48.
D
B
50.
B
D
52. A
53.
C
54.
55.
C
56. A
57.
C
58. A
59.
D
60.
61.
C
62.
63.
C
64. A
65. A
67.
C
46.
49. A
51.
B
44. A
45. A
47.
D
D
1
D
B
D
66.
B
68.
B
69. A
70.
D
71.
72. A
73.
B
74.
75.
B
76.
77.
D
78.
79.
D
80. A
B
D
C
D
82.
81. A
D
83.
85.
C
B
84.
B
86.
B
87.
D
88.
B
89.
D
91.
B
92. A
93.
B
94. A
95.
B
96. A
97.
98.
D
99.
100.
C
101.
102.
C
103.
104.
D
106. A
108.
C
110.
112.
B
121. A
127.
B
107.
B
116.
C
C
B
D
120.
C
122.
C
128. A
129. A
130. A
2
B
C
126.
B
C
118.
124.
C
125.
D
114.
D
123.
C
105.
111.
B
115.
119.
B
109.
D
117.
C
B
D